Find the general solution to the given partial differential equation and use it to find the solution satisfying the given initial data.
∂u∂x=−(2x+y)∂u∂y\frac{\partial u}{\partial x}=-(2x+y)\frac{\partial u}{\partial y}∂x∂u=−(2x+y)∂y∂u
u(0,y)=1+y2u(0,y)=1+y^2u(0,y)=1+y2
dx1=dy2x+y\frac{dx}{1}=\frac{dy}{2x+y}1dx=2x+ydy
(2x+y)dx−dy=0(2x+y)dx-dy=0(2x+y)dx−dy=0
μ(x)=e−x\mu(x)=e^{-x}μ(x)=e−x
e−xy′−e−xy=2xe−xe^{-x}y'-e^{-x}y=2xe^{-x}e−xy′−e−xy=2xe−x
ddx(ye−x)=2xe−x\frac{d}{dx}(ye^{-x})=2xe^{-x}dxd(ye−x)=2xe−x
ye−x=∫2xe−xdx=−2e−x(x+1)+cye^{-x}=\int 2xe^{-x}dx=-2e^{-x}(x+1)+cye−x=∫2xe−xdx=−2e−x(x+1)+c
u(x,y)=cu(x,y)=cu(x,y)=c
ye−x+2e−x(x+1)=cye^{-x}+2e^{-x}(x+1)=cye−x+2e−x(x+1)=c
u(x,y)=ye−x+2e−x(x+1)u(x,y)=ye^{-x}+2e^{-x}(x+1)u(x,y)=ye−x+2e−x(x+1)
u(0,y)=y+2=y2+1u(0,y)=y+2=y^2+1u(0,y)=y+2=y2+1
y2−y−1=0y^2-y-1=0y2−y−1=0
y1=1−52y_1=\frac{1-\sqrt{5}}{2}y1=21−5
u1(x,y)=1−52e−x+2e−x(x+1)u_1(x,y)=\frac{1-\sqrt{5}}{2}e^{-x}+2e^{-x}(x+1)u1(x,y)=21−5e−x+2e−x(x+1)
y2=1+52y_2=\frac{1+\sqrt{5}}{2}y2=21+5
u2(x,y)=1+52e−x+2e−x(x+1)u_2(x,y)=\frac{1+\sqrt{5}}{2}e^{-x}+2e^{-x}(x+1)u2(x,y)=21+5e−x+2e−x(x+1)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments