Question #259186

Find the general solution to the given partial differential equation and use it to find the solution satisfying the given initial data.

ux=(2x+y)uy\frac{\partial u}{\partial x}=-(2x+y)\frac{\partial u}{\partial y}

u(0,y)=1+y2u(0,y)=1+y^2


1
Expert's answer
2021-11-03T10:39:03-0400

dx1=dy2x+y\frac{dx}{1}=\frac{dy}{2x+y}


(2x+y)dxdy=0(2x+y)dx-dy=0


μ(x)=ex\mu(x)=e^{-x}


exyexy=2xexe^{-x}y'-e^{-x}y=2xe^{-x}


ddx(yex)=2xex\frac{d}{dx}(ye^{-x})=2xe^{-x}


yex=2xexdx=2ex(x+1)+cye^{-x}=\int 2xe^{-x}dx=-2e^{-x}(x+1)+c


u(x,y)=cu(x,y)=c


yex+2ex(x+1)=cye^{-x}+2e^{-x}(x+1)=c


u(x,y)=yex+2ex(x+1)u(x,y)=ye^{-x}+2e^{-x}(x+1)


u(0,y)=y+2=y2+1u(0,y)=y+2=y^2+1


y2y1=0y^2-y-1=0


y1=152y_1=\frac{1-\sqrt{5}}{2}


u1(x,y)=152ex+2ex(x+1)u_1(x,y)=\frac{1-\sqrt{5}}{2}e^{-x}+2e^{-x}(x+1)


y2=1+52y_2=\frac{1+\sqrt{5}}{2}


u2(x,y)=1+52ex+2ex(x+1)u_2(x,y)=\frac{1+\sqrt{5}}{2}e^{-x}+2e^{-x}(x+1)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS