Question #259057

(10-6y+e^(-3x))dx-2dy=0 


1
Expert's answer
2021-11-01T19:46:26-0400
(106y+e3x)dx2dy=0(10-6y+e^{-3x})dx-2dy=0

y+3y=12e3x+5y'+3y=\dfrac{1}{2}e^{-3x}+5

Find the integration factor


μ=e3x\mu=e^{3x}

Then


ye3x+3ye3x=12+5e3xy'e^{3x}+3ye^{3x}=\dfrac{1}{2}+5e^{3x}

d(e3xy)=(12+5e3x)dxd(e^{3x}y)=(\dfrac{1}{2}+5e^{3x})dx

Integrate


d(e3xy)=(12+5e3x)dx\int d(e^{3x}y)=\int(\dfrac{1}{2}+5e^{3x})dx

e3xy=12x+53e3x+Ce^{3x}y=\dfrac{1}{2}x+\dfrac{5}{3}e^{3x}+C

y=12xe3x+53+Ce3xy=\dfrac{1}{2}xe^{-3x}+\dfrac{5}{3}+Ce^{-3x}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS