Solution;
x+2(xp−y)+p2=0
x+2xp−2y+p2=0
2y=x+2xp+p2 .....(1)
2y=x(1+2p)+p2 ....(1a)
Differentiate (1) with respect forms;
2dxdy=2p=1+2p+2xdxdp+2pdxdp
Resolve as;
0=1+2dxdp(x+p)
dxdp=2(x+p)−1
dpdx=−2(x+p)
dpdx+2x=−2p
The I.F;
I.F=e∫2dp=e2p
Hence;
x×I.F=∫−2pe2p
xe2p=2−(2p−1)e2p+c
Therefore;
x=21−2p+e2pc ....(3)
Substitute (2) into (1a);
2y=[21−2p+e2pc](1+2p)+p2
y=[21−2p+e2pc]2(1+2p)+2p2
Comments