Question #258943

x + 2(xp − y) + p^2 = 0


1
Expert's answer
2021-11-04T20:01:18-0400

Solution;

x+2(xpy)+p2=0x+2(xp-y)+p^2=0

x+2xp2y+p2=0x+2xp-2y+p^2=0

2y=x+2xp+p22y=x+2xp+p^2 .....(1)

2y=x(1+2p)+p22y=x(1+2p)+p^2 ....(1a)

Differentiate (1) with respect forms;

2dydx=2p=1+2p+2xdpdx+2pdpdx2\frac{dy}{dx}=2p=1+2p+2x\frac{dp}{dx}+2p\frac{dp}{dx}

Resolve as;

0=1+2dpdx(x+p)0=1+2\frac{dp}{dx}(x+p)

dpdx=12(x+p)\frac{dp}{dx}=\frac{-1}{2(x+p)}

dxdp=2(x+p)\frac{dx}{dp}=-2(x+p)

dxdp+2x=2p\frac{dx}{dp}+2x=-2p

The I.F;

I.F=e2dp=e2pI.F=e^{\int{2}dp}=e^{2p}

Hence;

x×I.F=2pe2px×I.F=\int-2pe^{2p}

xe2p=(2p1)e2p2+cxe^{2p}=\frac{-(2p-1)e^{2p}}{2}+c

Therefore;

x=12p2+ce2px=\frac{1-2p}{2}+\frac{c}{e^{2p}} ....(3)

Substitute (2) into (1a);

2y=[12p2+ce2p](1+2p)+p22y=[\frac{1-2p}{2}+\frac{c}{e^{2p}}](1+2p)+p^2

y=[12p2+ce2p](1+2p)2+p22y=[\frac{1-2p}{2}+\frac{c}{e^{2p}}]\frac{(1+2p)}{2}+\frac{p^2}{2}











Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS