Question #257881

A string of length 10 𝑓𝑡. is raised at the middle to a distance of 1 𝑓𝑡, and then released. Describe the motion of the string assuming 𝑐 = 1𝑓𝑡. 𝑠 −1. 


1
Expert's answer
2021-11-24T05:04:31-0500


Equation of AO

y−0=x5y=x5y-0= \frac{x}{5}\\ y= \frac{x}{5}


Equation of AB

y=x−105−10y=10−x5y= \frac{x-10}{5-10}\\ y= \frac{10-x}{5}\\


Hence the motion distributed by

ytt=yxxyx,t=Xx∗xT′′T′′T=X′′X=−Îģ2BVPX′′+Îģ2X=0X(0)=X(10)=0;T′′+Îģ2T=0;T′(0)=0X(x)=c1cos⁥Îģx+c2sin⁥Îģx;T(t)=c3cos⁥Îģt+c4sin⁥ÎģtFor X(0)=0  ⟹  c1=0,T′(0)=0  ⟹  c4=0X(10)=0  ⟹  10Îģ=nĪ€â€…â€ŠâŸšâ€…â€ŠÎģ=nĪ€10;Tn=cos⁥(nĪ€10t)Xn=sin⁥(nĪ€10x)Y(x,t)=∑n=1∞Bnsin⁥(nĪ€10x)∗cos⁥(nĪ€10t)Y(x,0)=f(x)=∑n=1∞Bnsin⁥(nĪ€10x)Bn=210âˆĢ010f(x)sin⁥(nĪ€10x)dx=15[âˆĢ0515xsin⁥(nĪ€10x)dx+âˆĢ51015(10−x)sin⁥(nĪ€10x)dx]=8n2Ī€2sin⁥(nĪ€2)∴Y(x,t)=∑n=1∞8n2Ī€2sin⁥(nĪ€2)sin⁥(nĪ€10x)∗cos⁥(nĪ€10t)y_{tt}=y_{xx}\\ y_{x,t}=X_{x}*xT''\\ \frac{T''}{T}=\frac{X''}{X}= - Îģ^2\\ BVP\\ X'' + Îģ^2X=0\\ X(0)=X(10)=0; T''+Îģ^2T=0; T'(0)=0\\ X(x)= c_1 \cos Îģ x + c_2 \sin Îģ x; T(t)= c_3 \cos Îģ t + c_4 \sin Îģ t\\ For \space X(0)=0 \implies c_1=0, T'(0)=0 \implies c_4 =0\\ X (10)=0 \implies 10 Îģ= n \pi \implies Îģ = \frac{n \pi}{10} ; T_n= \cos (\frac{n \pi}{10}t)\\ X_n= \sin(\frac{n \pi}{10}x)\\ Y(x,t)=\sum_{n=1}^{\infin} B_n\sin(\frac{n \pi}{10}x)* \cos (\frac{n \pi}{10}t)\\ Y(x,0)= f(x)=\sum_{n=1}^{\infin} B_n\sin(\frac{n \pi}{10}x)\\ B_n=\frac{2}{10} \int_0^{10} f(x) \sin(\frac{n \pi}{10}x) dx\\ = \frac{1}{5}[ \int_0^{5} \frac{1}{5} x \sin(\frac{n \pi}{10}x) dx+ \int_5^{10} \frac{1}{5}(10- x) \sin(\frac{n \pi}{10}x) dx]\\ = \frac{8}{n^2 \pi^2}\sin(\frac{n \pi}{2})\\ \therefore Y(x,t)=\sum_{n=1}^{\infin} \frac{8}{n^2 \pi^2}\sin(\frac{n \pi}{2}) \sin(\frac{n \pi}{10}x)* \cos (\frac{n \pi}{10}t)\\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS