Answer to Question #257879 in Differential Equations for prezi

Question #257879

The ends and sides of a thin copper bar (𝛼 2 = 1.14) of length 2 are insulated so that no heat can pass through them. Find the temperature 𝑒(π‘₯,𝑑) in the bar if initially

𝑒(π‘₯, 0) = { 60π‘₯ 0 < π‘₯ < 1 60(2 βˆ’ π‘₯) 1 ≀ π‘₯ < 2Β 


1
Expert's answer
2021-11-01T19:20:54-0400

Solution;

The heat equation;

"\\frac{\\delta u}{\\delta t}=\\alpha^2\\frac{\\delta^2u}{\\delta x^2}......(1)"

The generalized solution of the equation is;

"u(x,t)=(Acos\\lambda x+Bsin\\lambda x)e^{-\\delta ^2\\lambda^2t}.......(2)"

The boundary conditions are;

"(i)u(0,t)=0"

"(ii)u(2,t)=0"

"u(x,0)=60x;0<x<1"

"u(x,0)=60(2-x);1\\leq x<2"

Applying condition (i) in (2),we have;

"u(0,t)=Ae^{-\\alpha^2\\lambda^2t}"

Hence ;

A=0

Equation (2) becomes;

"u(x,t)=Bsin\\lambda x)e^{-\\alpha^2\\lambda^2t}" ......(2a)

Apply condition (ii) into (2a),we have;

"0=Bsin(2\\lambda)e^{-\\alpha^2\\lambda^2t}"

Take ;

"2\\lambda=n\u03c0" ; "\\lambda=\\frac{n\u03c0}{x}"

By substitution;

"u(x,t)=B_nsin(\\frac{n\u03c0}{2}x)e^{\\frac{-\\alpha^2n^2\u03c0^2}{4}t}"

The most general solution of the above equation is a series sum (n is an integer)

"u(x,t)=\\displaystyle\\sum_{n=1}^{\\infin}B_nsin\\frac{n\u03c0x}{2}e^{\\frac{-1.14n^2\u03c0^2t}{4}}...(3)"

Using half ranger sin Fourier series;

"B_n=\\frac{2}{l}[\\int f(x)sin\\frac{n\u03c0x}{2}dx]"

"B_n=\\int_0^160xsin\\frac{n\u03c0x}{2}dx+\\int_1^260(2-x)sin\\frac{n\u03c0x}{2}dx"

Integrate by parts and simplify;

"B_n=\\frac{2}{n\u03c0}"

Substitute "B_n" into (3);

"u(x,t)=\\displaystyle\\sum_{n=1}^{\\infin}\\frac{2}{n\u03c0}sin\\frac{n\u03c0x}{2}e^{\\frac{-1.14n^2\u03c0^2t}{4}}"












Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS