Question #257879

The ends and sides of a thin copper bar (𝛼 2 = 1.14) of length 2 are insulated so that no heat can pass through them. Find the temperature 𝑒(π‘₯,𝑑) in the bar if initially

𝑒(π‘₯, 0) = { 60π‘₯ 0 < π‘₯ < 1 60(2 βˆ’ π‘₯) 1 ≀ π‘₯ < 2 


1
Expert's answer
2021-11-01T19:20:54-0400

Solution;

The heat equation;

Ξ΄uΞ΄t=Ξ±2Ξ΄2uΞ΄x2......(1)\frac{\delta u}{\delta t}=\alpha^2\frac{\delta^2u}{\delta x^2}......(1)

The generalized solution of the equation is;

u(x,t)=(AcosΞ»x+BsinΞ»x)eβˆ’Ξ΄2Ξ»2t.......(2)u(x,t)=(Acos\lambda x+Bsin\lambda x)e^{-\delta ^2\lambda^2t}.......(2)

The boundary conditions are;

(i)u(0,t)=0(i)u(0,t)=0

(ii)u(2,t)=0(ii)u(2,t)=0

u(x,0)=60x;0<x<1u(x,0)=60x;0<x<1

u(x,0)=60(2βˆ’x);1≀x<2u(x,0)=60(2-x);1\leq x<2

Applying condition (i) in (2),we have;

u(0,t)=Aeβˆ’Ξ±2Ξ»2tu(0,t)=Ae^{-\alpha^2\lambda^2t}

Hence ;

A=0

Equation (2) becomes;

u(x,t)=BsinΞ»x)eβˆ’Ξ±2Ξ»2tu(x,t)=Bsin\lambda x)e^{-\alpha^2\lambda^2t} ......(2a)

Apply condition (ii) into (2a),we have;

0=Bsin(2Ξ»)eβˆ’Ξ±2Ξ»2t0=Bsin(2\lambda)e^{-\alpha^2\lambda^2t}

Take ;

2Ξ»=nΟ€2\lambda=nΟ€ ; Ξ»=nΟ€x\lambda=\frac{nΟ€}{x}

By substitution;

u(x,t)=Bnsin(nΟ€2x)eβˆ’Ξ±2n2Ο€24tu(x,t)=B_nsin(\frac{nΟ€}{2}x)e^{\frac{-\alpha^2n^2Ο€^2}{4}t}

The most general solution of the above equation is a series sum (n is an integer)

u(x,t)=βˆ‘n=1∞BnsinnΟ€x2eβˆ’1.14n2Ο€2t4...(3)u(x,t)=\displaystyle\sum_{n=1}^{\infin}B_nsin\frac{nΟ€x}{2}e^{\frac{-1.14n^2Ο€^2t}{4}}...(3)

Using half ranger sin Fourier series;

Bn=2l[∫f(x)sinnΟ€x2dx]B_n=\frac{2}{l}[\int f(x)sin\frac{nΟ€x}{2}dx]

Bn=∫0160xsinnΟ€x2dx+∫1260(2βˆ’x)sinnΟ€x2dxB_n=\int_0^160xsin\frac{nΟ€x}{2}dx+\int_1^260(2-x)sin\frac{nΟ€x}{2}dx

Integrate by parts and simplify;

Bn=2nΟ€B_n=\frac{2}{nΟ€}

Substitute BnB_n into (3);

u(x,t)=βˆ‘n=1∞2nΟ€sinnΟ€x2eβˆ’1.14n2Ο€2t4u(x,t)=\displaystyle\sum_{n=1}^{\infin}\frac{2}{nΟ€}sin\frac{nΟ€x}{2}e^{\frac{-1.14n^2Ο€^2t}{4}}












Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS