Solution;
The heat equation;
Ξ΄tΞ΄uβ=Ξ±2Ξ΄x2Ξ΄2uβ......(1)
The generalized solution of the equation is;
u(x,t)=(AcosΞ»x+BsinΞ»x)eβΞ΄2Ξ»2t.......(2)
The boundary conditions are;
(i)u(0,t)=0
(ii)u(2,t)=0
u(x,0)=60x;0<x<1
u(x,0)=60(2βx);1β€x<2
Applying condition (i) in (2),we have;
u(0,t)=AeβΞ±2Ξ»2t
Hence ;
A=0
Equation (2) becomes;
u(x,t)=BsinΞ»x)eβΞ±2Ξ»2t ......(2a)
Apply condition (ii) into (2a),we have;
0=Bsin(2Ξ»)eβΞ±2Ξ»2t
Take ;
2Ξ»=nΟ ; Ξ»=xnΟβ
By substitution;
u(x,t)=Bnβsin(2nΟβx)e4βΞ±2n2Ο2βt
The most general solution of the above equation is a series sum (n is an integer)
u(x,t)=n=1βββBnβsin2nΟxβe4β1.14n2Ο2tβ...(3)
Using half ranger sin Fourier series;
Bnβ=l2β[β«f(x)sin2nΟxβdx]
Bnβ=β«01β60xsin2nΟxβdx+β«12β60(2βx)sin2nΟxβdx
Integrate by parts and simplify;
Bnβ=nΟ2β
Substitute Bnβ into (3);
u(x,t)=n=1βββnΟ2βsin2nΟxβe4β1.14n2Ο2tβ
Comments