Question #257172

verify that the indicated function is a solution of the given differential equation. Assume an appropriate interval I of denition of each solution. 25. x dy dx 2 3xy 5 1; y 5 e3x # x 1 e23t t d


1
Expert's answer
2021-10-27T13:30:18-0400
xdydx3xy=1x\dfrac{dy}{dx}-3xy=1

y=e3x1xe3ttdty=e^{3x}\displaystyle\int_{1}^{x}\dfrac{e^{-3t}}{t}dt

dydx=ddx(e3x1xe3ttdt)\dfrac{dy}{dx}=\dfrac{d}{dx}\bigg(e^{3x}\displaystyle\int_{1}^{x}\dfrac{e^{-3t}}{t}dt\bigg)

=3e3x1xe3ttdt+e3xe3xx=3e^{3x}\displaystyle\int_{1}^{x}\dfrac{e^{-3t}}{t}dt+e^{3x}\dfrac{e^{-3x}}{x}

=3e3x1xe3ttdt+1x=3e^{3x}\displaystyle\int_{1}^{x}\dfrac{e^{-3t}}{t}dt+\dfrac{1}{x}

Substitute


xdydx3xy=1x\dfrac{dy}{dx}-3xy=1

x(3e3x1xe3ttdt+1x)x\bigg(3e^{3x}\displaystyle\int_{1}^{x}\dfrac{e^{-3t}}{t}dt+\dfrac{1}{x}\bigg)

3x(e3x1xe3ttdt)=1-3x\bigg(e^{3x}\displaystyle\int_{1}^{x}\dfrac{e^{-3t}}{t}dt\bigg)=1

3xe3x1xe3ttdt+13xe3x1xe3ttdt=13xe^{3x}\displaystyle\int_{1}^{x}\dfrac{e^{-3t}}{t}dt+1-3xe^{3x}\displaystyle\int_{1}^{x}\dfrac{e^{-3t}}{t}dt=1

1=1,True1=1, True

Therefore the indicated function is a solution of the given differential equation.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS