Question #256784
xe^y dy + x^2+1/y dx= 0
1
Expert's answer
2021-10-26T17:21:20-0400
xeydy+x2+1ydx=0xe^y dy + \dfrac{x^2+1}{y} dx= 0

yeydy=x2+1xdxye^ydy=-\dfrac{x^2+1}{x}dx

Integrate both sides


yeydy=x2+1xdx\int ye^ydy=-\int\dfrac{x^2+1}{x}dx

yeydy=yeyeydy=yeyey+C1\int ye^ydy=ye^y-\int e^ydy=ye^y-e^y+C_1

yeyey=x22lnx+Cye^y-e^y=-\dfrac{x^2}{2}-\ln x+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS