Question #256279

solve dx/df=3x-4y, dy/dt=x-y


1
Expert's answer
2021-10-26T02:19:11-0400

From the second equation we get:

x=dydt+y=y+ydxdt=x=y+yx = \frac{{dy}}{{dt}} + y = y' + y \Rightarrow \frac{{dx}}{{dt}} = x' = y'' + y'

Substitute the found values ​​into the first equation:

y+y=3(y+y)4yy2y+y=0y'' + y' = 3\left( {y' + y} \right) - 4y \Rightarrow y'' - 2y' + y = 0

Characteristic equation:

k22k+1=0(k1)2=0k1=k2=1{k^2} - 2k + 1 = 0 \Rightarrow {(k - 1)^2} = 0 \Rightarrow {k_1} = {k_2} = 1

Then

y=C1et+tC2ety=C1et+C2et+tC2etx=y+y=C1et+C2et+tC2et+C1et+tC2et==2C1et+2tC2et+C2ety = {C_1}{e^t} + t{C_2}{e^t} \Rightarrow y' = {C_1}{e^t} + {C_2}{e^t} + t{C_2}{e^t}\Rightarrow \\ \Rightarrow x = y' + y = {C_1}{e^t} + {C_2}{e^t} + t{C_2}{e^t} + {C_1}{e^t} + t{C_2}{e^t} = \\=2{C_1}{e^t} + 2t{C_2}{e^t} + {C_2}{e^t}

Answer: y=C1et+tC2et,x=2C1et+2tC2et+C2ety = {C_1}{e^t} + t{C_2}{e^t},\,x = 2{C_1}{e^t} + 2t{C_2}{e^t} + {C_2}{e^t}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS