From the second equation we get:
x=dtdy+y=y′+y⇒dtdx=x′=y′′+y′
Substitute the found values into the first equation:
y′′+y′=3(y′+y)−4y⇒y′′−2y′+y=0
Characteristic equation:
k2−2k+1=0⇒(k−1)2=0⇒k1=k2=1
Then
y=C1et+tC2et⇒y′=C1et+C2et+tC2et⇒⇒x=y′+y=C1et+C2et+tC2et+C1et+tC2et==2C1et+2tC2et+C2et
Answer: y=C1et+tC2et,x=2C1et+2tC2et+C2et
Comments