Question #256278

y''+2y'+2y=2 y(0)=0,y'(0)=1


1
Expert's answer
2022-01-18T06:30:18-0500

Characteristic equation

k2+2k+2=0D=48=4k1=22i2=1ik2=1+i{k^2} + 2k + 2 = 0\\ D = 4 - 8 = - 4\\ {k_1} = \frac{{ - 2 - 2i}}{2} = - 1 - i\\ {k_2} = - 1 + i

We obtain the general solution of the homogeneous equation

y0=ex(C1cosx+C2sinx){y_0} = {e^{ - x}}\left( {{C_1}\cos x + {C_2}\sin x} \right)

We will seek a particular solution of the equation in the form

Y=AY=Y=0Y = A \Rightarrow Y' = Y'' = 0

then

0+0+2A=2A=10 + 0 + 2A = 2 \Rightarrow A = 1

Then

Y=A,y=y0+Y=ex(C1cosx+C2sinx)+1Y = A,\,\,y = {y_0} + Y = {e^{ - x}}\left( {{C_1}\cos x + {C_2}\sin x} \right) + 1


y=ex(C1cosx+C2sinx)+ex(C1sinx+C2cosx)y' = - {e^{ - x}}\left( {{C_1}\cos x + {C_2}\sin x} \right) + {e^{ - x}}\left( { - {C_1}\sin x + {C_2}\cos x} \right)

y(0)=0,y(0)=1{C1+1=0C1+C2=1C1=1,C2=0y(0) = 0,\,y'(0) = 1 \Rightarrow \left\{ {\begin{matrix} {{C_1} +1= 0}\\ { - {C_1} + {C_2} = 1} \end{matrix}} \right. \Rightarrow {C_1} = -1,\,\,{C_2} = 0

Answer: y=excosx+1y = - {e^{ - x}}\cos x + 1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS