Characteristic equation
k2+2k+2=0D=4−8=−4k1=2−2−2i=−1−ik2=−1+i
We obtain the general solution of the homogeneous equation
y0=e−x(C1cosx+C2sinx)
We will seek a particular solution of the equation in the form
Y=A⇒Y′=Y′′=0
then
0+0+2A=2⇒A=1
Then
Y=A,y=y0+Y=e−x(C1cosx+C2sinx)+1
y′=−e−x(C1cosx+C2sinx)+e−x(−C1sinx+C2cosx)
y(0)=0,y′(0)=1⇒{C1+1=0−C1+C2=1⇒C1=−1,C2=0
Answer: y=−e−xcosx+1
Comments