Solve by Charpit's method
f(x,y,z,p,q)=pxy+pq+qy−yz=0 Then
fx=py,fy=px+q−z,fz=−y,
fp=xy+q,fq=p+y Charpit's auxiliary equations are
fx+pfzdp=fy+qfzdq=−(pfp+qfq)dz
=−fpdx=−fqdy=0df
py−pydp=px+q−z−qydq=−(pfp+qfq)dz
=−xy−qdx=−p−ydy From first and second members
0dp=px+q−z−qydq=>dp=0=>p=a Then
pxy+pq+qy−yz=0
=>axy+aq+qy−yz=0
=>q=a+yy(z−ax) Now consider
dz=pdx+qdy=>dz=adx+a+yy(z−ax)dy Put t=z−ax,dt=dz−adx
dt=a+yytdy
tdt=a+yydy Integrate both sides
∫tdt=∫a+yydy
lnt=y−aln(a+y)+lnC The required solution is
ln(z−ax)=y−aln(a+y)+lnC
Comments