Question #256238
Pxy+Pq+qy=yz
1
Expert's answer
2021-10-26T03:14:15-0400

Solve by Charpit's method


f(x,y,z,p,q)=pxy+pq+qyyz=0f(x,y,z,p,q)=pxy+pq+qy-yz=0

Then


fx=py,fy=px+qz,fz=y,f_x=py, f_y=px+q-z, f_z=-y,

fp=xy+q,fq=p+yf_p=xy+q, f_q=p+y

Charpit's auxiliary equations are


dpfx+pfz=dqfy+qfz=dz(pfp+qfq)\dfrac{dp}{f_x+pf_z}=\dfrac{dq}{f_y+qf_z}=\dfrac{dz}{-(pf_p+qf_q)}

=dxfp=dyfq=df0=\dfrac{dx}{-f_p}=\dfrac{dy}{-f_q}=\dfrac{df}{0}

dppypy=dqpx+qzqy=dz(pfp+qfq)\dfrac{dp}{py-py}=\dfrac{dq}{px+q-z-qy}=\dfrac{dz}{-(pf_p+qf_q)}


=dxxyq=dypy=\dfrac{dx}{-xy-q}=\dfrac{dy}{-p-y}

From first and second members


dp0=dqpx+qzqy=>dp=0=>p=a\dfrac{dp}{0}=\dfrac{dq}{px+q-z-qy}=>dp=0=>p=a

Then


pxy+pq+qyyz=0pxy+pq+qy-yz=0

=>axy+aq+qyyz=0=>axy+aq+qy-yz=0

=>q=y(zax)a+y=>q=\dfrac{y(z-ax)}{a+y}

Now consider


dz=pdx+qdy=>dz=adx+y(zax)a+ydydz=pdx+qdy=>dz=adx+\dfrac{y(z-ax)}{a+y}dy

Put t=zax,dt=dzadxt=z-ax, dt=dz-adx


dt=yta+ydydt=\dfrac{yt}{a+y}dy

dtt=ya+ydy\dfrac{dt}{t}=\dfrac{y}{a+y}dy

Integrate both sides


dtt=ya+ydy\int\dfrac{dt}{t}=\int\dfrac{y}{a+y}dy

lnt=yaln(a+y)+lnC\ln t=y-a\ln(a+y)+\ln C

The required solution is

ln(zax)=yaln(a+y)+lnC\ln (z-ax)=y-a\ln(a+y)+\ln C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS