Question #255953

Verify that the given functions form the fundamental set of solution of the differential equation on the given indicated interval.


2x^2y" +5xy' + y = x^2-x

y = C1x^-1/2 + C2x^-1 + 15x^2-1/6x, (-0, infinity)


1
Expert's answer
2021-10-25T16:34:37-0400
2x2y+5xy+y=x2x2x^2y'' +5xy' + y = x^2-x

y=C1x1/2+C2x1+115x216x,(0,)y = C_1x^{-1/2} + C_2x^{-1} +\dfrac{1}{15}x^2-\dfrac{1}{6}x, (0, \infin)

y=12C1x3/2C2x2+215x16y'=-\dfrac{1}{2}C_1x^{-3/2} - C_2x^{-2} +\dfrac{2}{15}x-\dfrac{1}{6}

y=34C1x5/2+2C2x3+215y''=\dfrac{3}{4}C_1x^{-5/2} +2 C_2x^{-3} +\dfrac{2}{15}

2x2y+5xy+y=x2x2x^2y'' +5xy' + y = x^2-x

2x2(34C1x5/2+2C2x3+215)2x^2(\dfrac{3}{4}C_1x^{-5/2} +2 C_2x^{-3} +\dfrac{2}{15})

+5x(12C1x3/2C2x2+215x16)+5x(-\dfrac{1}{2}C_1x^{-3/2} - C_2x^{-2} +\dfrac{2}{15}x-\dfrac{1}{6})

+C1x1/2+C2x1+115x216x+C_1x^{-1/2} + C_2x^{-1} +\dfrac{1}{15}x^2-\dfrac{1}{6}x

=32C1x1/2+4C2x1+415x2=\dfrac{3}{2}C_1x^{-1/2} +4 C_2x^{-1} +\dfrac{4}{15}x^2

52C1x1/25C2x1+23x256x-\dfrac{5}{2}C_1x^{-1/2} -5 C_2x^{-1} +\dfrac{2}{3}x^2-\dfrac{5}{6}x

+C1x1/2+C2x1+115x216x+C_1x^{-1/2} + C_2x^{-1} +\dfrac{1}{15}x^2-\dfrac{1}{6}x

=x2x,True x(0,)=x^2-x, True\ x\in(0, \infin)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS