Question #255570
x²p+y²q+z²=0
1
Expert's answer
2021-10-25T16:26:46-0400

dxfp=dyfq=dzpfpqfq=dpfx+pfz=dqfy+qfz\frac{dx}{-f_p}=\frac{dy}{-f_q}=\frac{dz}{-pf_p-qf_q}=\frac{dp}{f_x+pf_z}=\frac{dq}{f_y+qf_z}


dxx2=dyy2=dzpx2+qy2=dp2px+2pz=dq2qy+2qz\frac{dx}{-x^2}=\frac{dy}{-y^2}=\frac{dz}{px^2+qy^2}=\frac{dp}{2px+2pz}=\frac{dq}{2qy+2qz}


1/y=1/x+c1-1/y=-1/x+c_1

c1=1/x1/yc_1=1/x-1/y


2dx/x+2dy/y2x2y=dp/pdq/q2x2y\frac{-2dx/x+2dy/y}{2x-2y}=\frac{dp/p-dq/q}{2x-2y}


2lnx+2lny=lnplnq-2lnx+2lny=lnp-lnq

y2/x2=p/qy^2/x^2=p/q


x2p+x2p+z2=2x2p+z2=0x^2p+x^2p+z^2=2x^2p+z^2=0


dx2x2=dzz2\frac{dx}{2x^2}=-\frac{dz}{z^2}


1/z=1/(2x)+c21/z=-1/(2x)+c_2

c2=1/z+1/(2x)c_2=1/z+1/(2x)


F(c1,c2)=F(1/x1/y,1/z+1/(2x))=0F(c_1,c_2)=F(1/x-1/y,1/z+1/(2x))=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS