−fpdx=−fqdy=−pfp−qfqdz=fx+pfzdp=fy+qfzdq
−2pdx=y3dy=2p2−y3qdz=−2xdp=2ydq
2xdx=2pdp
p2=x2+c
y=c1
2ydy/y3=dq
q=−2/y+c′
−2xd(x2+c)=2yd(−2/y+c′)
case 1:
−2x2+cdx=y3dy
−1/2y2=−ln(x2+c+x)/2+c2′
c2=y2−ln(x2+c+x)
F(c1,c2)=F(y,y2−ln(x2+c+x))=0
case 2:
−2x−d(x2+c)=2yd(−2/y+c′)
−1/2y2=ln(x2+c+x)/2+c2′
c2=y2+ln(x2+c+x)
F(c1,c2)=F(y,y2+ln(x2+c+x))=0
Comments