Question #255546

Find the complete integral of the differential equation

p2- y3q = x2 -y2.


1
Expert's answer
2021-10-27T10:23:57-0400

dxfp=dyfq=dzpfpqfq=dpfx+pfz=dqfy+qfz\frac{dx}{-f_p}=\frac{dy}{-f_q}=\frac{dz}{-pf_p-qf_q}=\frac{dp}{f_x+pf_z}=\frac{dq}{f_y+qf_z}


dx2p=dyy3=dz2p2y3q=dp2x=dq2y\frac{dx}{-2p}=\frac{dy}{y^3}=\frac{dz}{2p^2-y^3q}=\frac{dp}{-2x}=\frac{dq}{2y}


2xdx=2pdp2xdx=2pdp

p2=x2+cp^2=x^2+c

y=c1y=c_1


2ydy/y3=dq2ydy/y^3=dq

q=2/y+cq=-2/y+c'


d(x2+c)2x=d(2/y+c)2y\frac{d(\sqrt{x^2+c})}{-2x}=\frac{d(-2/y+c')}{2y}


case 1:


dx2x2+c=dyy3-\frac{dx}{2\sqrt{x^2+c}}=\frac{dy}{y^3}


1/2y2=ln(x2+c+x)/2+c2-1/2y^2=-ln(\sqrt{x^2+c}+x)/2+c'_2


c2=y2ln(x2+c+x)c_2=y^2-ln(\sqrt{x^2+c}+x)


F(c1,c2)=F(y,y2ln(x2+c+x))=0F(c_1,c_2)=F(y,y^2-ln(\sqrt{x^2+c}+x))=0


case 2:


d(x2+c)2x=d(2/y+c)2y\frac{-d(\sqrt{x^2+c})}{-2x}=\frac{d(-2/y+c')}{2y}


1/2y2=ln(x2+c+x)/2+c2-1/2y^2=ln(\sqrt{x^2+c}+x)/2+c'_2


c2=y2+ln(x2+c+x)c_2=y^2+ln(\sqrt{x^2+c}+x)


F(c1,c2)=F(y,y2+ln(x2+c+x))=0F(c_1,c_2)=F(y,y^2+ln(\sqrt{x^2+c}+x))=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS