Question #252344

Find the characteristics values and the characteristics functions of the sturn_liouville problem

d/dx[x(dy/dx]+(λ /x)y=0,

y1(1)=0, y1(e(2π))=0 where λ>0


1
Expert's answer
2021-11-08T17:39:35-0500

if λ>0\lambda>0 :

λ=k2\lambda=k^2 with k>0k>0

x2y+xy+k2y=0x^2y''+xy'+k^2y=0


an Euler equation with indicial equation:

r2+k2=(rik)(r+ik)=0r^2+k^2=(r-ik)(r+ik)=0

y=c1cos(klnx)+c2sin(klnx)y=c_1cos(klnx)+c_2sin(klnx)


y=c1sin(klnx)/x+c2cos(klnx)/xy'=-c_1sin(klnx)/x+c_2cos(klnx)/x

y(1)=c2=0y'(1)=c_2=0


y(e2π)=c1sin(2kπ)/e2π=0y'(e^{2\pi})=-c_1sin(2k\pi)/e^{2\pi}=0


2kπ=πn2k\pi=\pi n

k=n/2k= n/2


λn=( n/2)2\lambda_n=(\ n/2)^2

yn=cos(nlnx/2)y_n=cos( nlnx/2)

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS