Find the characteristics values and the characteristics functions of the sturn_liouville problem
d/dx[x(dy/dx]+(λ /x)y=0,
y1(1)=0, y1(e(2π))=0 where λ>0
if λ>0\lambda>0λ>0 :
λ=k2\lambda=k^2λ=k2 with k>0k>0k>0
x2y′′+xy′+k2y=0x^2y''+xy'+k^2y=0x2y′′+xy′+k2y=0
an Euler equation with indicial equation:
r2+k2=(r−ik)(r+ik)=0r^2+k^2=(r-ik)(r+ik)=0r2+k2=(r−ik)(r+ik)=0
y=c1cos(klnx)+c2sin(klnx)y=c_1cos(klnx)+c_2sin(klnx)y=c1cos(klnx)+c2sin(klnx)
y′=−c1sin(klnx)/x+c2cos(klnx)/xy'=-c_1sin(klnx)/x+c_2cos(klnx)/xy′=−c1sin(klnx)/x+c2cos(klnx)/x
y′(1)=c2=0y'(1)=c_2=0y′(1)=c2=0
y′(e2π)=−c1sin(2kπ)/e2π=0y'(e^{2\pi})=-c_1sin(2k\pi)/e^{2\pi}=0y′(e2π)=−c1sin(2kπ)/e2π=0
2kπ=πn2k\pi=\pi n2kπ=πn
k=n/2k= n/2k=n/2
λn=( n/2)2\lambda_n=(\ n/2)^2λn=( n/2)2
yn=cos(nlnx/2)y_n=cos( nlnx/2)yn=cos(nlnx/2)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments