Question #252337

By the method of separation of variables, solve the boundary value problem

∂u/∂x=4∂u/∂y, u(0,y)=8e-3y

1
Expert's answer
2021-11-05T13:51:00-0400

let the solution is of the form u(x,y)=X(x)Y(y).

put u(x,y) in the given pde.

YXx=4XYy1XXx=4YYy=λ(say)first solve1XXx=λ    X=c1eλxSecond solve4YYy=λ    Y=c1eλy4Therefore, the solution is given byu(x,y)=c1c2eλ(x+y4)=ceλ(x+y4)Now, apply the given condition, we getc=8ey(3+λ4)Therefore, the solution isu(x,y)=8ey(3+λ4)eλ(x+y) Since, it is a boundary value problem. Therefore, when the boundary conditions given then we can calculate the value of lambda and get the solution u(x,y).Y\frac{\partial X}{\partial x}=4X\frac{\partial Y}{\partial y}\\ \frac{1}{X}\frac{\partial X}{\partial x}=\frac{4}{Y}\frac{\partial Y}{\partial y}=\lambda(say)\\ \text{first solve}\\ \frac{1}{X}\frac{\partial X}{\partial x}=\lambda\\ \implies X=c_1e^{\lambda x}\\ \text{Second solve}\\ \frac{4}{Y}\frac{\partial Y}{\partial y}=\lambda\\ \implies Y=c_1e^{ \frac{\lambda y}{4}}\\ \text{Therefore, the solution is given by}\\ u(x,y)=c_1c_2e^{\lambda(x+\frac{ y}{4})} =ce^{\lambda(x+\frac{ y}{4})}\\ \text{Now, apply the given condition, we get}\\ c=8e^{-y(3+ \frac{\lambda}{4})} \text{Therefore, the solution is}\\ u(x,y)=8e^{-y(3+ \frac{\lambda}{4})}e^{\lambda(x+y)}\\ \text{ Since, it is a boundary value problem. Therefore, when the boundary conditions given then we can calculate the value of lambda and get the solution u(x,y).}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS