Question #252335

Find the non-trivial solution of the sturn_liouville problem d2y/dx2+λy=0 y(0)=0, y(π)=0


1
Expert's answer
2021-11-03T15:12:42-0400

Any eigenvalues of Equation dy2x2+λy=0\dfrac{dy^2}{x^2}+λy=0 must be positive. If yy satisfies the equation with λ>0,\lambda>0, then


y=c1cosλx+c2sinλxy=c_1\cos\sqrt{\lambda}x+c_2\sin\sqrt{\lambda}x

where c1c_1 and c2c_2 are constants. The boundary condition y(0)=0y(0)=0 implies that c1=0.c_1=0. Therefore


y=c2sinλxy=c_2\sin\sqrt{\lambda}x

The boundary condition y(π)=0y(\pi) = 0 implies that


c2sinλπ=0c_2\sin\sqrt{\lambda}\pi=0

To make c2sinλπ=0c_2\sin\sqrt{\lambda}\pi=0 with c20,c_2 \not= 0, we must choose λ=n,\sqrt{\lambda} = n, where nn is a positive integer.

Therefore λn2=n2\lambda_n^2=n^2 is an eigenvalue and


yn=sin(nx)y_n=\sin(nx)

is an associated eigenfunction.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS