dx2d2y−4dxdy+3y=1+e−x1y′′−4y′+3=1+e−x1The auxilliary equation is; m2−4m+3=0(m−1)(m−3)=0m=1 or 3The complimentary solution is; y=Aex+Be3xThe Wronskian for the DE is;W=y1y2′−y1′y2W=3e4x−e4x=2e4xC1′=W−f(x)y2=2e4x(1+e−x)e3x=2ex(1+e−x)1=2ex+21C2′=Wf(x)y1=2e4x(1+e−x)ex=(2e3x+2e2x)1C1=∫2ex(1+e−x)1dx=21(x−ln(ex+1))+K1C2=∫(2e3x+2e2x)1dx=41(2x−e−2x+2e−x−2ln(ex+1))+K2Therefore, y(x)=Aex+Be3x+2ex(x−ln(ex+1))+4e3x(2x−e−2x+2e−x−2ln(ex+1))+K
Comments