Question #252035

Apply the method of Varition of parameter

d^2y/dx^2 -4 dy/dx +3 y = 1/1+e^-x


1
Expert's answer
2021-10-18T17:10:33-0400

d2ydx24dydx+3y=11+exy4y+3=11+exThe auxilliary equation is; m24m+3=0(m1)(m3)=0m=1 or 3The complimentary solution is; y=Aex+Be3xThe Wronskian for the DE is;W=y1y2y1y2W=3e4xe4x=2e4xC1=f(x)y2W=e3x2e4x(1+ex)=12ex(1+ex)=12ex+2C2=f(x)y1W=ex2e4x(1+ex)=1(2e3x+2e2x)C1=12ex(1+ex)dx=12(xln(ex+1))+K1C2=1(2e3x+2e2x)dx=14(2xe2x+2ex2ln(ex+1))+K2Therefore, y(x)=Aex+Be3x+ex2(xln(ex+1))+e3x4(2xe2x+2ex2ln(ex+1))+K\frac{d^2y}{dx^2}-4\frac{dy}{dx}+3y=\frac{1}{1+e^{-x}}\\ y''-4y'+3=\frac{1}{1+e^{-x}}\\ \text{The auxilliary equation is; }\\ m^2-4m+3=0\\ (m-1)(m-3)=0\\ m=1 \text{ or } 3\\ \text{The complimentary solution is; }\\ y=Ae^x+Be^{3x}\\ \text{The Wronskian for the DE is;}\\ W=y_1y_2'-y_1'y_2\\ W=3e^{4x}-e^4x=2e^4x\\ C_1'=\frac{-f(x)y_2}{W}=\frac{e^{3x}}{2e^{4x}(1+e^{-x})}=\frac{1}{2e^x(1+e^{-x})}=\frac{1}{2e^x+2}\\ C_2'=\frac{f(x)y_1}{W}=\frac{e^x}{2e^{4x}(1+e^{-x})}=\frac{1}{(2e^{3x}+2e^{2x})}\\ C_1=\int \frac{1}{2e^x(1+e^{-x})} dx=\frac{1}{2}(x-\ln(e^x+1))+K_1\\ C_2=\int \frac{1}{(2e^{3x}+2e^{2x})} dx= \frac{1}{4}(2x-e^{-2x}+2e^{-x}-2\ln(e^x+1))+K_2\\ \text{Therefore, }\\ y(x)=Ae^x+Be^{3x}+\frac{e^x}{2}(x-\ln(e^x+1))+\frac{e^{3x}}{4}(2x-e^{-2x}+2e^{-x}-2\ln(e^x+1))+K


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS