Question #252033

Solve the method of undermined coefficient (D^2+8D+16)y=8e^-2x ; y(0)= 2 y'(0)= 0


1
Expert's answer
2021-10-18T16:39:17-0400

Homogeneous differential equation


(D2+8D+16)y=0(D^2+8D+16)y=0

Corresponding (auxiliary) equation


r2+8r+16=0r^2+8r+16=0

(r+4)2=0(r+4)^2=0

r1=r2=4r_1=r_2=-4

The general solution of the homogeneous differential equation is


yh=c1xe4x+c2e4xy_h=c_1xe^{-4x}+c_2e^{-4x}

Find the particular solution of the nonhomogeneous differential equation


yp=Ae2xy_p=Ae^{-2x}

yp=2Ae2xy_p'=-2Ae^{-2x}

yp=4Ae2xy_p''=4Ae^{-2x}

Substitute


4Ae2x16Ae2x+16Ae2x=8e2x4Ae^{-2x}-16Ae^{-2x}+16Ae^{-2x}=8e^{-2x}

A=2A=2

The general solution of the nonhomogeneous differential equation is


y=c1xe4x+c2e4x+2e2xy=c_1xe^{-4x}+c_2e^{-4x}+2e^{-2x}

y(0)=2,y(0)=0y(0)= 2, y'(0)= 0


c1(0)e4(0)+c2e4(0)+2e2(0)=2=>c2=0c_1(0)e^{-4(0)}+c_2e^{-4(0)}+2e^{-2(0)}=2=>c_2=0

y=c1xe4x+2e2xy=c_1xe^{-4x}+2e^{-2x}

y=c1e4x4c1xe4x4e2xy'=c_1e^{-4x}-4c_1xe^{-4x}-4e^{-2x}

c1e4(0)4c1(0)e4(0)4e2(0)=0=>c1=4c_1e^{-4(0)}-4c_1(0)e^{-4(0)}-4e^{-2(0)}=0=>c_1=4

The solution of the given initial value problem is


y=4xe4x+2e2xy=4xe^{-4x}+2e^{-2x}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS