Question #251767
2y(x^2 - y + x) dx + (x^2 - 2y) dy = 0
1
Expert's answer
2021-10-18T04:30:47-0400

M(x,y)=2y(x2y+x),My=2x24y+2xM(x, y)=2y(x^2-y+x), M_y=2x^2-4y+2x

N(x,y)=x22y,Nx=2xN(x, y)=x^2-2y, N_x=2x


MyNxN=2x24y+2x2xx22y=2\dfrac{M_y-N_x}{N}=\dfrac{2x^2-4y+2x-2x}{x^2-2y}=2

μ(x)=e2dx=e2x\mu(x)=e^{\int 2dx}=e^{2x}

2e2xy(x2y+x)dx+e2x(x22y)dy=02e^{2x}y(x^2 - y + x) dx +e^{2x} (x^2 - 2y) dy = 0

My=2e2x(x22y+x)M_y=2e^{2x}(x^2-2y+x)

Nx=e2x(2(x22y)+2x)N_x=e^{2x}(2(x^2-2y)+2x)

My=2e2x(x22y+x)=NyM_y=2e^{2x}(x^2-2y+x)=N_y

u(x,y)=e2x(x22y)dy+g(x)u(x, y)=\int e^{2x} (x^2 - 2y)dy+g(x)

=e2xx2ye2xy2+g(x)=e^{2x}x^2y-e^{2x}y^2+g(x)

ux=2e2xx2y+2e2xxy2e2xy2+g(x)\dfrac{\partial u}{\partial x}=2e^{2x}x^2y+2e^{2x}xy-2e^{2x}y^2+g'(x)

=2e2xy(x2y+x)=2e^{2x}y(x^2 - y + x)

g(x)=0=>g(x)=Cg'(x)=0=>g(x)=-C

e2xx2ye2xy2C=0e^{2x}x^2y-e^{2x}y^2-C=0

e2xx2ye2xy2=Ce^{2x}x^2y-e^{2x}y^2=C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS