auxillary equation:
m2+2m+1=0
m1,2=−1
C.F.=f1(y+mx)+xf2(y+mx)=f1(y−x)+xf2(y−x)
for particular integral:
for ex−y :
F(D,D′)1eax+by=F(a,b)1eax+by
D2+2DD′+D′1ex−y=1−2−11ex−y=−ex−y/2
for xy :
F(D,D′)1xy=D21(1+D2D′+D2D′)−1xy=D21(1−D2D′+...)xy=
=D21(xy−2x/D)=x3/6−x4/12
z=f1(y−x)+xf2(y−x)−ex−y/2+x3/6−x4/12
Comments