Question #251722
(D^2+2DD'+D')=e^x-y+xy
1
Expert's answer
2022-01-24T14:18:24-0500

auxillary equation:

m2+2m+1=0m^2+2m+1=0

m1,2=1m_{1,2}=-1

C.F.=f1(y+mx)+xf2(y+mx)=f1(yx)+xf2(yx)C.F.=f_1(y+mx)+xf_2(y+mx)=f_1(y-x)+xf_2(y-x)


for particular integral:

for exye^{x-y} :

1F(D,D)eax+by=1F(a,b)eax+by\frac{1}{F(D,D')}e^{ax+by}=\frac{1}{F(a,b)}e^{ax+by}


1D2+2DD+Dexy=1121exy=exy/2\frac{1}{D^2+2DD'+D'}e^{x-y}=\frac{1}{1-2-1}e^{x-y}=-e^{x-y}/2


for xyxy :

1F(D,D)xy=1D2(1+2DD+DD2)1xy=1D2(12DD+...)xy=\frac{1}{F(D,D')}xy=\frac{1}{D^2}(1+\frac{2D'}{D}+\frac{D'}{D^2})^{-1}xy=\frac{1}{D^2}(1-\frac{2D'}{D}+...)xy=


=1D2(xy2x/D)=x3/6x4/12=\frac{1}{D^2}(xy-2x/D)=x^3/6-x^4/12


z=f1(yx)+xf2(yx)exy/2+x3/6x4/12z=f_1(y-x)+xf_2(y-x)-e^{x-y}/2+x^3/6-x^4/12


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS