Question #251514
What is the separable variable? Dy/dx = ye^-x^2, y(4) = 1?
1
Expert's answer
2021-10-19T10:20:27-0400

Solution:

A differential equation is said to be separable variable if the variables can be separated.

Given,

dydx=yex2\frac{dy}{dx} = ye^{-x^2}

dyy=ex2dx\Rightarrow \frac{dy}{y} = e^{-x^2}dx

dyy=ex2dx\Rightarrow \int\frac{dy}{y}=\int e{^{-x^2}}dx

But ex2dx\int e^{-x^2}dx  is a non elementary integral. We can express it as a power series

ex2=1x21!+x42!x63!+x84!..e^{-x^2}= 1 - \frac{x^2}{1!}+\frac{x^4}{2!}-\frac{x^6}{3!} +\frac{x^8}{4!}-..

We can approximate it as

ex2=1x21!+x42!x63!e^{-x^2}= 1 - \frac{x^2}{1!}+\frac{x^4}{2!}-\frac{x^6}{3!}

So differential equation transforms to

dyy=\int\frac{dy}{y}=\int (1x21!+x42!x63!)dx(1 - \frac{x^2}{1!}+\frac{x^4}{2!}-\frac{x^6}{3!})dx

 lny=xx33+x510x742+C\Rightarrow \ln |y|=x - \frac{x^3}{3}+\frac{x^5}{10}-\frac{x^7}{42} + C

By initial condition y(4)=1

0 = 4433+45104742+C4 - \frac{4^3}{3}+\frac{4^5}{10}-\frac{4^7}{42} + C

C=305.028\Rightarrow C=305.028

So ln|y| = xx33+x510x742+305.028x - \frac{x^3}{3}+\frac{x^5}{10}-\frac{x^7}{42} +305.028

 y=e(xx33+x510x742+305.028)\Rightarrow y=e^{(x - \frac{x^3}{3}+\frac{x^5}{10}-\frac{x^7}{42} + 305.028)}

This is the explicit solution of the given differential equation.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS