Question #250487

Solve ( D3 – 3DD′2+2D′3 )Z = e2x – y


1
Expert's answer
2022-01-18T16:29:27-0500

(D33DD2+2D3)Z=e2xy( D^3 – 3DD'^2+2D'^3)Z = e^{2x – y}

Replace D with m and D' with 1

Auxiliary equation becomes m33m+2=0m^3-3m+2=0

(m1)(m2+m2)=0(m-1)(m^2+m-2)=0

(m-1)(m-1)(m+2)=0

m=1,1,-2

C.F=f1(y+x)+xf2(y+x)+f3(y2x)C.F=f_1(y+x)+xf_2(y+x)+f_3(y-2x)

For particular integral;

P.I=1(D33DD2+2D3)e2xyP.I=\frac{1}{( D^3 – 3DD'^2+2D'^3)} e^{2x – y}

Put D=2 and D'=-1

P.I=1(233(2)(1)2+2(1)3)e2xyP.I=\frac{1}{( 2^3 – 3(2)(-1)^2+2(-1)^3)} e^{2x – y}

=1862)e2xy=\frac{1}{8-6-2)}e^{2x-y}

We then differentiate the denominator w.r.t D and multiply by x to get,

P.I=xddD(D33DD2+2D3)e2xyP.I=\frac{x}{\frac{d}{dD}( D^3 – 3DD'^2+2D'^3)} e^{2x – y}

=x(3D23D2+0)e2xy=\frac{x}{( 3D^2 – 3D'^2+0)} e^{2x – y}

=x1(3D23D2)e2xy=x\frac{1}{( 3D^2 – 3D'^2)} e^{2x – y}

Now put D=2 and D'=-1

=x1(3(2)23(1)2)e2xy=x1(123)e2xy=x\frac{1}{( 3(2)^2 – 3(-1)^2)} e^{2x – y}\newline=x\frac{1}{( 12– 3)} e^{2x – y}

P.I=x9e2xyP.I=\frac{x}{9}e^{2x-y}

The solution to the equation becomes,

z=C.F+P.I

=f1(y+x)+xf2(y+x)+f3(y2x)+19xe2xy=f_1(y+x)+xf_2(y+x)+f_3(y-2x)+\frac{1}{9}xe^{2x-y}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS