(D3–3DD′2+2D′3)Z=e2x–y
Replace D with m and D' with 1
Auxiliary equation becomes m3−3m+2=0
(m−1)(m2+m−2)=0
(m-1)(m-1)(m+2)=0
m=1,1,-2
C.F=f1(y+x)+xf2(y+x)+f3(y−2x)
For particular integral;
P.I=(D3–3DD′2+2D′3)1e2x–y
Put D=2 and D'=-1
P.I=(23–3(2)(−1)2+2(−1)3)1e2x–y
=8−6−2)1e2x−y
We then differentiate the denominator w.r.t D and multiply by x to get,
P.I=dDd(D3–3DD′2+2D′3)xe2x–y
=(3D2–3D′2+0)xe2x–y
=x(3D2–3D′2)1e2x–y
Now put D=2 and D'=-1
=x(3(2)2–3(−1)2)1e2x–y=x(12–3)1e2x–y
P.I=9xe2x−y
The solution to the equation becomes,
z=C.F+P.I
=f1(y+x)+xf2(y+x)+f3(y−2x)+91xe2x−y
Comments