Given (D3−3DD′2∗+2D′3)z=e2x−y
Put D=m and D'=1
Auxiliary equation is;
m3-3m+2=0
(m-1)(m2+m-2)=0
(m-1)(m-1)(m+2)=0
m=1, 1, -2
C.F=f1(y+x)+xf2(y+x)+f3(y-2x)
For particular integral,
P.I=(D3−3DD′2∗+2D′3)1e2x−y
Put D=2, D'=-1
P.I=(23−3(2)(−1)2∗+2(−1)3)1e2x−y
=8−6−21e2x−y
On putting D=2 and D'=-1 in the denominator,it became zero.
Since the denominator becomes zero, we differentiate it with respect to D and multiply by x, we get
P.I=dDd(D3−3DD′2∗+2D′3)xe2x−y
=(3D2−3D′2∗+0)xe2x−y
=x3D2−3D′21e2x−y
Now out D=2 ,D'=-1
=x3(2)2−3(−1)21e2x−y
=x12−31e2x−y
P.I=9xe2x−y
So the solution becomes,
z=C.F+P.I
=f1(y+x)+xf2(y+x)+f3(y−2x)+91xe2x−y
Comments