Question #250485

Solve ( D3 – 3DD′2+2D′3 )Z = e2x – y


1
Expert's answer
2021-10-13T17:11:28-0400

Given (D33DD2+2D3)z=e2xy(D^{3}-3DD'^{2*}+2D'^{3})z=e^{2x-y}

Put D=m and D'=1

Auxiliary equation is;

m3-3m+2=0

(m-1)(m2+m-2)=0

(m-1)(m-1)(m+2)=0

m=1, 1, -2

C.F=f1(y+x)+xf2(y+x)+f3(y-2x)

For particular integral,

P.I=1(D33DD2+2D3)e2xyP.I=\frac{1}{(D^{3}-3DD'^{2*}+2D'^{3})}e^{2x-y}

Put D=2, D'=-1

P.I=1(233(2)(1)2+2(1)3)e2xyP.I=\frac{1}{(2^{3}-3(2)(-1)^{2*}+2(-1)^{3})}e^{2x-y}

=1862e2xy=\frac{1}{8-6-2}e^{2x-y}

On putting D=2 and D'=-1 in the denominator,it became zero.

Since the denominator becomes zero, we differentiate it with respect to D and multiply by x, we get

P.I=xddD(D33DD2+2D3)e2xyP.I=\frac{x}{\frac{d}{dD}(D^{3}-3DD'^{2*}+2D'^{3})}e^{2x-y}

=x(3D23D2+0)e2xy=\frac{x}{(3D^{2}-3D'^{2*}+0)}e^{2x-y}

=x13D23D2e2xy=x\frac{1}{3D^{2}-3D'^{2}}e^{2x-y}

Now out D=2 ,D'=-1

=x13(2)23(1)2e2xy=x\frac{1}{3(2)^{2}-3(-1)^{2}}e^{2x-y}

=x1123e2xy=x\frac{1}{12-3}e^{2x-y}

P.I=x9e2xy\frac{x}{9}e^{2x-y}

So the solution becomes,

z=C.F+P.I

=f1(y+x)+xf2(y+x)+f3(y2x)+19xe2xy=f_1(y+x)+xf_2(y+x)+f_3(y-2x)+\frac{1}{9}xe^{2x-y}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS