Question #250467
exact (x^2+y^2-5)dx=(y+xy)dy y(0)=1
1
Expert's answer
2021-10-13T12:51:24-0400
(x2+y25)dx+(yxy)dy=0(x^2+y^2-5)dx+(-y-xy)dy=0


M(x,y)=x2+y25,My=2yM(x, y)=x^2+y^2-5, M_y=2y

N(x,y)=yxy,Nx=yN(x, y)=-y-xy, N_x=-y

MyNxM_y\not=N_x

MyNxN=2y(y)yxy=3x+1=P(x)\dfrac{M_y-N_x}{N}=\dfrac{2y-(-y)}{-y-xy}=-\dfrac{3}{x+1}=P(x)

Integrating factor


μ(x)=e(3x+1)dx=1(x+1)3\mu(x)=e^{\int(-{3 \over x+1})dx}=\dfrac{1}{(x+1)^3}

x2+y25(x+1)3dx+yxy(x+1)3dy=0\dfrac{x^2+y^2-5}{(x+1)^3}dx+\dfrac{-y-xy}{(x+1)^3}dy=0

M(x,y)=x2+y25(x+1)3,My=2y(x+1)3M(x, y)=\dfrac{x^2+y^2-5}{(x+1)^3}, M_y=\dfrac{2y}{(x+1)^3}

N(x,y)=y(x+1)2,Nx=2y(x+1)3N(x, y)=-\dfrac{y}{(x+1)^2}, N_x=\dfrac{2y}{(x+1)^3}

My=2y(x+1)3=NxM_y=\dfrac{2y}{(x+1)^3}=N_x

f(x,y)=(y(x+1)2)dy+g(x)f(x, y)=\int(-\dfrac{y}{(x+1)^2})dy+g(x)

=y22(x+1)2+g(x)=-\dfrac{y^2}{2(x+1)^2}+g(x)

fx=y2(x+1)3+g(x)=x2+y25(x+1)3f_x=\dfrac{y^2}{(x+1)^3}+g'(x)=\dfrac{x^2+y^2-5}{(x+1)^3}

g(x)=x25(x+1)3g'(x)=\dfrac{x^2-5}{(x+1)^3}

g(x)=x25(x+1)3dx=x2+2x+12x24(x+1)3dxg(x)=\int\dfrac{x^2-5}{(x+1)^3}dx=\int\dfrac{x^2+2x+1-2x-2-4}{(x+1)^3}dx

=1x+1dx21(x+1)2dx41(x+1)3dx=\int\dfrac{1}{x+1}dx-2\int\dfrac{1}{(x+1)^2}dx-4\int\dfrac{1}{(x+1)^3}dx

=ln(x+1)+2x+1+2(x+1)2C=\ln(|x+1|)+\dfrac{2}{x+1}+\dfrac{2}{(x+1)^2}-C

y22(x+1)2+ln(x+1)+2x+1+2(x+1)2=C-\dfrac{y^2}{2(x+1)^2}+\ln(|x+1|)+\dfrac{2}{x+1}+\dfrac{2}{(x+1)^2}=C

The initial condition y(0)=1y(0)=1


(1)22(0+1)2+ln(0+1)+20+1+2(0+1)2=C-\dfrac{(1)^2}{2(0+1)^2}+\ln(|0+1|)+\dfrac{2}{0+1}+\dfrac{2}{(0+1)^2}=C

C=72C=\dfrac{7}{2}

The solution of the initial value problem


y22(x+1)2+ln(x+1)+2x+1+2(x+1)2=72-\dfrac{y^2}{2(x+1)^2}+\ln(|x+1|)+\dfrac{2}{x+1}+\dfrac{2}{(x+1)^2}=\dfrac{7}{2}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS