(x2+y2−5)dx+(−y−xy)dy=0
M(x,y)=x2+y2−5,My=2y
N(x,y)=−y−xy,Nx=−y
My=Nx
NMy−Nx=−y−xy2y−(−y)=−x+13=P(x) Integrating factor
μ(x)=e∫(−x+13)dx=(x+1)31
(x+1)3x2+y2−5dx+(x+1)3−y−xydy=0
M(x,y)=(x+1)3x2+y2−5,My=(x+1)32y
N(x,y)=−(x+1)2y,Nx=(x+1)32y
My=(x+1)32y=Nx
f(x,y)=∫(−(x+1)2y)dy+g(x)
=−2(x+1)2y2+g(x)
fx=(x+1)3y2+g′(x)=(x+1)3x2+y2−5
g′(x)=(x+1)3x2−5
g(x)=∫(x+1)3x2−5dx=∫(x+1)3x2+2x+1−2x−2−4dx
=∫x+11dx−2∫(x+1)21dx−4∫(x+1)31dx
=ln(∣x+1∣)+x+12+(x+1)22−C
−2(x+1)2y2+ln(∣x+1∣)+x+12+(x+1)22=C The initial condition y(0)=1
−2(0+1)2(1)2+ln(∣0+1∣)+0+12+(0+1)22=C
C=27 The solution of the initial value problem
−2(x+1)2y2+ln(∣x+1∣)+x+12+(x+1)22=27
Comments