Solve by method of separation of variable
ydx−xdy=0ydx-xdy=0ydx−xdy=0
Solution:
ydx−xdy=0⇒ydx=xdy⇒dxx=dyyydx-xdy=0 \\ \Rightarrow ydx=xdy \\ \Rightarrow \dfrac {dx}x=\dfrac {dy}yydx−xdy=0⇒ydx=xdy⇒xdx=ydy
On integrating both sides,
lnx+lnC=lny⇒lnCx=lny⇒Cx=y\ln x+\ln C=\ln y \\\Rightarrow \ln Cx=\ln y \\\Rightarrow Cx=ylnx+lnC=lny⇒lnCx=lny⇒Cx=y
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments