Question #249988
Solve (3x+y-z)p + (x+y-z)q = 2(z+y)
1
Expert's answer
2021-10-12T15:18:54-0400

dx3x+yz=dyx+yz\frac{dx}{3x+yz}=\frac{dy}{x+yz}

(x+yz)dx=(3x+yz)dy(x+yz)dx=(3x+yz)dy

x22+xyz3xyy2z2=C1\frac{x^2}{2}+xyz-3xy-\frac{y^2z}{2}=C_1

dyx+yz=dz2(z+y)\frac{dy}{x+yz}=\frac{dz}{2(z+y)}

(x+yz)dz=2(z+y)dy(x+yz)dz=2(z+y)dy

xz+yz222zyy2=C2xz+\frac{yz^2}{2}-2zy-y^2=C_2

Answer:ψ(x22+xyz3xyy2z2;xz+yz222zyy2)\psi(\frac{x^2}{2}+xyz-3xy-\frac{y^2z}{2};xz+\frac{yz^2}{2}-2zy-y^2) =0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS