dx3x+yz=dyx+yz\frac{dx}{3x+yz}=\frac{dy}{x+yz}3x+yzdx=x+yzdy
(x+yz)dx=(3x+yz)dy(x+yz)dx=(3x+yz)dy(x+yz)dx=(3x+yz)dy
x22+xyz−3xy−y2z2=C1\frac{x^2}{2}+xyz-3xy-\frac{y^2z}{2}=C_12x2+xyz−3xy−2y2z=C1
dyx+yz=dz2(z+y)\frac{dy}{x+yz}=\frac{dz}{2(z+y)}x+yzdy=2(z+y)dz
(x+yz)dz=2(z+y)dy(x+yz)dz=2(z+y)dy(x+yz)dz=2(z+y)dy
xz+yz22−2zy−y2=C2xz+\frac{yz^2}{2}-2zy-y^2=C_2xz+2yz2−2zy−y2=C2
Answer:ψ(x22+xyz−3xy−y2z2;xz+yz22−2zy−y2)\psi(\frac{x^2}{2}+xyz-3xy-\frac{y^2z}{2};xz+\frac{yz^2}{2}-2zy-y^2)ψ(2x2+xyz−3xy−2y2z;xz+2yz2−2zy−y2) =0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments