a)
m x ′ ′ + k x + 2 v = f ( t ) mx''+kx+2v=f(t) m x ′′ + k x + 2 v = f ( t )
m x ′ ′ + 2 x ′ + k x = 12 c o s 2 t + 3 s i n 2 t mx''+2x'+kx=12 cos 2t + 3 sin 2t m x ′′ + 2 x ′ + k x = 12 cos 2 t + 3 s in 2 t
32 x ′ ′ + 2 x ′ + 5 x = 12 c o s 2 t + 3 s i n 2 t 32x''+2x'+5x=12 cos 2t + 3 sin 2t 32 x ′′ + 2 x ′ + 5 x = 12 cos 2 t + 3 s in 2 t
b)
32 k 2 + 2 k + 5 = 0 32k^2+2k+5=0 32 k 2 + 2 k + 5 = 0
k = − 2 ± 4 − 640 64 = − 0.031 ± 0.394 i k=\frac{-2\pm \sqrt{4-640}}{64}=-0.031\pm 0.394i k = 64 − 2 ± 4 − 640 = − 0.031 ± 0.394 i
x c = e − 0.031 t ( c 1 c o s ( 0.394 t ) + c 2 s i n ( 0.394 t ) ) x_c=e^{-0.031t}(c_1cos(0.394t)+c_2sin(0.394t)) x c = e − 0.031 t ( c 1 cos ( 0.394 t ) + c 2 s in ( 0.394 t ))
x p = A c o s 2 t + B s i n 2 t x_p=Acos2t+Bsin2t x p = A cos 2 t + B s in 2 t
32 ( − 4 A c o s 2 t − 4 B s i n 2 t ) + 2 ( − 2 A s i n 2 t + 2 B c o s 2 t ) + 5 ( A c o s 2 t + B s i n 2 t ) = 32(-4Acos2t-4Bsin2t)+2(-2Asin2t+2Bcos2t)+5(Acos2t+Bsin2t)= 32 ( − 4 A cos 2 t − 4 B s in 2 t ) + 2 ( − 2 A s in 2 t + 2 B cos 2 t ) + 5 ( A cos 2 t + B s in 2 t ) =
= 12 c o s 2 t + 3 s i n 2 t =12 cos 2t + 3 sin 2t = 12 cos 2 t + 3 s in 2 t
− 128 A + 4 B + 5 A = 12 ⟹ − 123 A + 4 B = 12 -128A+4B+5A=12\implies -123A+4B=12 − 128 A + 4 B + 5 A = 12 ⟹ − 123 A + 4 B = 12
− 128 B − 4 A + 5 B = 3 ⟹ − 4 A − 123 B = 3 -128B-4A+5B=3\implies -4A-123B=3 − 128 B − 4 A + 5 B = 3 ⟹ − 4 A − 123 B = 3
B = ( 12 + 123 A ) / 4 B=(12+123A)/4 B = ( 12 + 123 A ) /4
− 16 A − 123 ( 12 + 123 A ) = 12 -16A-123(12+123A)=12 − 16 A − 123 ( 12 + 123 A ) = 12
− 15145 A = 1488 -15145A=1488 − 15145 A = 1488
A = − 0.098 A=-0.098 A = − 0.098
B = − 0.014 B=-0.014 B = − 0.014
x = x c + x p = e − 0.031 t ( c 1 c o s ( 0.394 t ) + c 2 s i n ( 0.394 t ) ) − 0.098 c o s 2 t − 0.014 s i n 2 t x=x_c+x_p=e^{-0.031t}(c_1cos(0.394t)+c_2sin(0.394t))-0.098cos2t-0.014sin2t x = x c + x p = e − 0.031 t ( c 1 cos ( 0.394 t ) + c 2 s in ( 0.394 t )) − 0.098 cos 2 t − 0.014 s in 2 t
x ( 0 ) = c 1 − 0.098 = 1 ⟹ c 1 = 1.098 x(0)=c_1-0.098=1\implies c_1=1.098 x ( 0 ) = c 1 − 0.098 = 1 ⟹ c 1 = 1.098
x ′ ( 0 ) = − 0.031 ⋅ 1.098 + 0.394 c 2 − 0.028 = 5 ⟹ c 2 = 12.848 x'(0)=-0.031\cdot1.098+0.394c_2-0.028=5\implies c_2=12.848 x ′ ( 0 ) = − 0.031 ⋅ 1.098 + 0.394 c 2 − 0.028 = 5 ⟹ c 2 = 12.848
x = e − 0.031 t ( 1.098 c o s ( 0.394 t ) + 12.848 s i n ( 0.394 t ) ) − 0.098 c o s 2 t − 0.014 s i n 2 t x=e^{-0.031t}(1.098cos(0.394t)+12.848sin(0.394t))-0.098cos2t-0.014sin2t x = e − 0.031 t ( 1.098 cos ( 0.394 t ) + 12.848 s in ( 0.394 t )) − 0.098 cos 2 t − 0.014 s in 2 t
x ( π / 4 ) = 0.976 ( 1.098 + 0.027 ) − 0.014 = 1.084 x(\pi/4)=0.976(1.098+0.027)-0.014=1.084 x ( π /4 ) = 0.976 ( 1.098 + 0.027 ) − 0.014 = 1.084 ft
x ′ = − 0.031 e − 0.031 t ( 1.098 c o s ( 0.394 t ) + 12.848 s i n ( 0.394 t ) ) + x'=-0.031e^{-0.031t}(1.098cos(0.394t)+12.848sin(0.394t))+ x ′ = − 0.031 e − 0.031 t ( 1.098 cos ( 0.394 t ) + 12.848 s in ( 0.394 t )) +
+ e − 0.031 t ( − 0.433 s i n ( 0.394 t ) + 5.062 c o s ( 0.394 t ) ) + 0.196 s i n 2 t − 0.028 c o s 2 t +e^{-0.031t}(-0.433sin(0.394t)+5.062cos(0.394t))+0.196sin2t-0.028cos2t + e − 0.031 t ( − 0.433 s in ( 0.394 t ) + 5.062 cos ( 0.394 t )) + 0.196 s in 2 t − 0.028 cos 2 t
x ′ ( π / 4 ) = − 0.031 ⋅ 0.976 ( 1.098 + 0.069 ) + 0.976 ( − 0.003 + 5.062 ) + 0.196 = x'(\pi/4)=-0.031\cdot 0.976(1.098+0.069)+0.976(-0.003+5.062)+0.196= x ′ ( π /4 ) = − 0.031 ⋅ 0.976 ( 1.098 + 0.069 ) + 0.976 ( − 0.003 + 5.062 ) + 0.196 =
= 5.098 =5.098 = 5.098 ft/s
Comments