Question #249212
A ball weighing 32 pounds is attached to a spring whose constant is 5 lb/ft. Initially, the mass is released 1 foot below the equilibrium position with a downward velocity of 5 ft/s, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to 2 times the instantaneous velocity. (a) Find the equation of motion if the ball is driven by an external force equal to f(t) = 12 cos 2t + 3 sin 2t. (b) Determine the position and velocity of the ball at t = pi/4 sec.
1
Expert's answer
2022-01-21T10:13:32-0500

a)

mx+kx+2v=f(t)mx''+kx+2v=f(t)

mx+2x+kx=12cos2t+3sin2tmx''+2x'+kx=12 cos 2t + 3 sin 2t

32x+2x+5x=12cos2t+3sin2t32x''+2x'+5x=12 cos 2t + 3 sin 2t


b)

32k2+2k+5=032k^2+2k+5=0

k=2±464064=0.031±0.394ik=\frac{-2\pm \sqrt{4-640}}{64}=-0.031\pm 0.394i


xc=e0.031t(c1cos(0.394t)+c2sin(0.394t))x_c=e^{-0.031t}(c_1cos(0.394t)+c_2sin(0.394t))


xp=Acos2t+Bsin2tx_p=Acos2t+Bsin2t


32(4Acos2t4Bsin2t)+2(2Asin2t+2Bcos2t)+5(Acos2t+Bsin2t)=32(-4Acos2t-4Bsin2t)+2(-2Asin2t+2Bcos2t)+5(Acos2t+Bsin2t)=

=12cos2t+3sin2t=12 cos 2t + 3 sin 2t


128A+4B+5A=12    123A+4B=12-128A+4B+5A=12\implies -123A+4B=12

128B4A+5B=3    4A123B=3-128B-4A+5B=3\implies -4A-123B=3


B=(12+123A)/4B=(12+123A)/4

16A123(12+123A)=12-16A-123(12+123A)=12

15145A=1488-15145A=1488

A=0.098A=-0.098

B=0.014B=-0.014


x=xc+xp=e0.031t(c1cos(0.394t)+c2sin(0.394t))0.098cos2t0.014sin2tx=x_c+x_p=e^{-0.031t}(c_1cos(0.394t)+c_2sin(0.394t))-0.098cos2t-0.014sin2t


x(0)=c10.098=1    c1=1.098x(0)=c_1-0.098=1\implies c_1=1.098

x(0)=0.0311.098+0.394c20.028=5    c2=12.848x'(0)=-0.031\cdot1.098+0.394c_2-0.028=5\implies c_2=12.848


x=e0.031t(1.098cos(0.394t)+12.848sin(0.394t))0.098cos2t0.014sin2tx=e^{-0.031t}(1.098cos(0.394t)+12.848sin(0.394t))-0.098cos2t-0.014sin2t


x(π/4)=0.976(1.098+0.027)0.014=1.084x(\pi/4)=0.976(1.098+0.027)-0.014=1.084 ft


x=0.031e0.031t(1.098cos(0.394t)+12.848sin(0.394t))+x'=-0.031e^{-0.031t}(1.098cos(0.394t)+12.848sin(0.394t))+

+e0.031t(0.433sin(0.394t)+5.062cos(0.394t))+0.196sin2t0.028cos2t+e^{-0.031t}(-0.433sin(0.394t)+5.062cos(0.394t))+0.196sin2t-0.028cos2t


x(π/4)=0.0310.976(1.098+0.069)+0.976(0.003+5.062)+0.196=x'(\pi/4)=-0.031\cdot 0.976(1.098+0.069)+0.976(-0.003+5.062)+0.196=

=5.098=5.098 ft/s


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS