Question #249209
A force of 2 pounds stretches a spring 1 foot. A mass weighing 3.2 pounds is attached to the
spring, and the system is then immersed in a medium that offers a damping force that is
numerically equal to 0.4 times the instantaneous velocity. (a) Find the equation of motion if the mass is initially released from rest from a point 1 foot above the equilibrium position. (b) Determine the position and velocity of the mass at t = sec? (c) Find the first time at which the mass passes through the equilibrium position heading upward.
1
Expert's answer
2021-10-12T05:00:30-0400

We proceed to calculate and convert everything before proceeding


Fspring=kx    k=Fspringx=mgxk=2lbf1ft×1ft0.3048m×4,4482N1lbfk=29.1877NmFdamping=0.4v=[0.4lbfs]dxdt=bdxdt\vec{F_{spring}}=-k\vec{x} \\ \implies k=\frac{F_{spring}}{x'}=\frac{mg}{x'} \\ k=\frac{2\,lb_f}{1\,ft}\times \frac{1\,ft}{0.3048\,m} \times \frac{4,4482\,N}{1\,lb_f} \\ \therefore k=29.1877\frac{N}{m} \\ \vec{F_{damping}}=-0.4\vec{v}=-[0.4\frac{lb_f}{s}]\frac{dx}{dt}=-b\frac{dx}{dt}



Fext=Fdamping+Fspring=ma    md2xdx2=bdxdtkx\sum F_{ext}=\vec{F_{damping}}+\vec{F_{spring}}=m\vec{a} \\ \implies m\cfrac{d^2x}{dx^2}=-b\cfrac{dx}{dt}-kx


(a) Then, once we have the equation in SI units, we have the following expression:


1.4515d2xdx2+1.7793dxdt+29.1877x=0d2xdx2+1.2258dxdt+20.1086x=0d2xdx2+γdxdt+ω02x=01.4515\cfrac{d^2x}{dx^2}+1.7793\cfrac{dx}{dt}+29.1877x=0 \\ \therefore \cfrac{d^2x}{dx^2}+1.2258\cfrac{dx}{dt}+20.1086x=0 \\ \therefore \cfrac{d^2x}{dx^2}+ \gamma\cfrac{dx}{dt}+ \omega^2_0 x=0


We were able to find that the damping is light because


γ2/4=(1.22582)/4<ω02\gamma^2/4=(1.2258^2)/4<\omega^2_0


Now we proceed to find the solution for x(t) and from that expression we can find the velocity at any time:

x(t)=A0exp(γt/2)cos(ωt)v(t)=x(t)=A0exp(γt/2)[ωsin(ωt)+(γ/2)cos(ωt)]A0=2 ft = 0.6096 mω=(ωo2γ2/4)1/2=(20.108621.22582/4)1/2=20.0992s1x_{(t)} = A_0 \exp(−γ t/2) \cos {(ωt)} \\ v_{(t)} = x'_{(t)}= -A_0 \exp(−γ t/2)[ ω \sin {(ωt)} +(γ /2)\cos {(ωt)} ] \\ A_0=\text{2 ft = 0.6096 m} \\ ω = (ω^2_o− γ^2/4)^{1/2}= (20.1086^2−1.2258^2/4)^{1/2}=20.0992\,s^{-1}


(b) After substituion, we find:


x(t)=(0.6096m)exp(10.0496t)cos(20.0992t)v(t)=(0.6096m)exp(10.0496t)[(20.0992s1)sin(20.0992t)+(10.0496s1)cos(20.0992t)]x_{(t)} = (0.6096\,m) \exp(− 10.0496t) \cos {(20.0992t)} \\ v_{(t)} =-(0.6096\,m) \exp(−10.0496t)[ (20.0992\,s^{-1}) \sin {(20.0992t)} +(10.0496\,s^{-1})\cos {(20.0992t)} ]


(c) The mass goes up when cos(ωt)=cos(3π/2)    t=3π2ω\cos(\omega t)=\cos(3\pi /2) \implies t=\cfrac{3\pi}{2\omega }


We use the argument 3π/2 for the cosine function because that is the one that defines the displacement when the mass is going up (on the other hand when ωt=π/2 the mass is going down). Then, the time we were looking for will be:

t=3π2(20.0992s1)=0.2344st=\cfrac{3\pi}{2(20.0992\,s^{-1})}=0.2344\,s


Reference:

  • King, G. C. (2013). Vibrations and waves. John Wiley & Sons.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS