Question #249204
A steel ball weighing 128 Ib is suspended from a spring, whereupon the spring is stretched 2 ft from its natural length. The ball is started in motion with no initial velocity by displacing it 6 in above the equilibrium position. Assuming no air resistance, find (a) an expression for the position of the ball at any time t, and (b) the position of the ball at t=pi/4 sec
1
Expert's answer
2021-10-11T15:53:19-0400

Steel ball weight=128lb

∆x=2ft

At equilibrium x=0

Position above equilibrium, t=0,x=6in=0.5ft

x=ACos wt=12Cos(2πtT)\frac{1}{2}Cos (\frac{2πt}{T})

f=ma=-kx

dxdt=ddt(12Cos(2πtT))\frac{dx}{dt}=\frac{d}{dt}(\frac{1}{2}Cos(\frac{2πt}{T}))

=2π2T(Sin2πtT)=\frac{2π}{2T}(-Sin\frac{2πt}{T})

a=d2xdt2=ddt(2π2TSin2πtT)\frac{d^{2}x}{dt^{2}}=\frac{d}{dt}(-\frac{2π}{2T}Sin\frac{2πt}{T})

=12(2πT)2Cos2πtT=\frac{1}{2}(\frac{2π}{T})^{2}Cos \frac{2πt}{T}

K=FxK=\frac{F}{∆x} =1282=64lb/ft\frac{128}{2}=64lb/ft

m=12832=4\frac{128}{32}=4

a)

x=12Cos(2πtπ2)x=\frac{1}{2}Cos (\frac{2πt}{\frac{π}{2}})

=0.5Cos(4t)=0.5 Cos(4t)

b)

t=π4\frac{π}{4}

x=0.5Cos(4π4)x=0.5Cos(4*\frac{π}{4})

=0.5Cosπ

=-0.5


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS