Question #249203
An LRC series circuit has L = 20 henries, R = 180 ohms, C = 1/280 farad, and an applied voltage E(t) = 10 sin t. Assuming no initial charge on the capacitor, but an initial current of 1 Ampere at t = 0 when the voltage is first applied, find the steady-state charge q(t) on the capacitor and the steady-state circuit current i(t).
1
Expert's answer
2021-10-11T15:47:28-0400

LQ+RQ+Q/C=E(t)LQ''+RQ'+Q/C=E(t)


20Q+180Q+280Q=10sint20Q''+180Q'+280Q=10sint

k2+9k+14=0k^2+9k+14=0


Q=9±81562Q=\frac{-9\pm \sqrt{81-56}}{2}


k1=7, k2=2k_1=-7,\ k_2=-2


Homogeneous Solution:


Q=c1e7t+c2e2tQ=c_1e^{-7t}+c_2e^{-2t}


Particular Solution:


Q=Asint+BcostQ=Asint+Bcost

Q=AcostBsintQ'=Acost-Bsint

Q=AsintBcostQ''=-Asint-Bcost

AsintBcost+9(AcostBsint)+14(Asint+Bcost)=10sint-Asint-Bcost+9(Acost-Bsint)+14(Asint+Bcost)=10sint

(A9B+14A)sint+(B+9A+14B)cost=10sint(-A-9B+14A)sint+(-B+9A+14B)cost=10sint


9A+13B=09A+13B=0

13A9B=1013A-9B=10


A=13B/9A=-13B/9

169B81B=90-169B-81B=90

B=9/25B=-9/25

A=13/25A=13/25

Q=1325sint925costQ=\frac{13}{25}sint-\frac{9}{25}cost


General Solution:


Q=c1e7t+c2e2t+1325sint925costQ=c_1e^{-7t}+c_2e^{-2t}+\frac{13}{25}sint-\frac{9}{25}cost


I=dQdt=7c1e7t2c2e2t+1325cost+925sintI=\frac{dQ}{dt}=-7c_1e^{-7t}-2c_2e^{-2t}+\frac{13}{25}cost+\frac{9}{25}sint


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS