Question #249060

(4𝑥𝑦 + 3𝑦2 )𝑑𝑥 + 𝑥(𝑥 + 2𝑦)𝑑𝑦 = 0


1
Expert's answer
2021-10-12T13:35:39-0400

(4xy+3y2)y=4x+6y(x(x+2y))x=2x+2y(4xy+3y^2)_y=4x+6y\neq (x(x+2y))_x=2x+2y

So, the equation is not exact.


u=y/xu=y/x

y=xu+uy'=xu'+u

3x2u2+2x2(xu)+4x2u+x2(xu)=03x^2u^2+2x^2(xu)'+4x^2u+x^2(xu)'=0

2x3uu+x3u+5x2u2+5x2u=02x^3uu'+x^3u'+5x^2u^2+5x^2u=0


(2u+1)u5u(u+1)=1x\frac{(2u+1)u'}{5u(u+1)}=-\frac{1}{x}


2u+15u(u+1)du=1xdx\int\frac{2u+1}{5u(u+1)}du=-\int\frac{1}{x}dx


ln(u2+u)5=clnx\frac{ln(u^2+u)}{5}=c-lnx


u1=c1/x+1+12u_1=-\frac{\sqrt{c_1/x+1}+1}{2}


u2=c1/x+112u_2=\frac{\sqrt{c_1/x+1}-1}{2}


y1=c1/x+1+12xy_1=-\frac{\sqrt{c_1/x+1}+1}{2}x


y2=c1/x+112xy_2=\frac{\sqrt{c_1/x+1}-1}{2}x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS