(4𝑥𝑦 + 3𝑦2 )𝑑𝑥 + 𝑥(𝑥 + 2𝑦)𝑑𝑦 = 0
(4xy+3y2)y=4x+6y≠(x(x+2y))x=2x+2y(4xy+3y^2)_y=4x+6y\neq (x(x+2y))_x=2x+2y(4xy+3y2)y=4x+6y=(x(x+2y))x=2x+2y
So, the equation is not exact.
u=y/xu=y/xu=y/x
y′=xu′+uy'=xu'+uy′=xu′+u
3x2u2+2x2(xu)′+4x2u+x2(xu)′=03x^2u^2+2x^2(xu)'+4x^2u+x^2(xu)'=03x2u2+2x2(xu)′+4x2u+x2(xu)′=0
2x3uu′+x3u′+5x2u2+5x2u=02x^3uu'+x^3u'+5x^2u^2+5x^2u=02x3uu′+x3u′+5x2u2+5x2u=0
(2u+1)u′5u(u+1)=−1x\frac{(2u+1)u'}{5u(u+1)}=-\frac{1}{x}5u(u+1)(2u+1)u′=−x1
∫2u+15u(u+1)du=−∫1xdx\int\frac{2u+1}{5u(u+1)}du=-\int\frac{1}{x}dx∫5u(u+1)2u+1du=−∫x1dx
ln(u2+u)5=c−lnx\frac{ln(u^2+u)}{5}=c-lnx5ln(u2+u)=c−lnx
u1=−c1/x+1+12u_1=-\frac{\sqrt{c_1/x+1}+1}{2}u1=−2c1/x+1+1
u2=c1/x+1−12u_2=\frac{\sqrt{c_1/x+1}-1}{2}u2=2c1/x+1−1
y1=−c1/x+1+12xy_1=-\frac{\sqrt{c_1/x+1}+1}{2}xy1=−2c1/x+1+1x
y2=c1/x+1−12xy_2=\frac{\sqrt{c_1/x+1}-1}{2}xy2=2c1/x+1−1x
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments