( 4 x y + 3 y 2 ) y = 4 x + 6 y ≠ ( x ( x + 2 y ) ) x = 2 x + 2 y (4xy+3y^2)_y=4x+6y\neq (x(x+2y))_x=2x+2y ( 4 x y + 3 y 2 ) y = 4 x + 6 y = ( x ( x + 2 y ) ) x = 2 x + 2 y
So, the equation is not exact.
u = y / x u=y/x u = y / x
y ′ = x u ′ + u y'=xu'+u y ′ = x u ′ + u
3 x 2 u 2 + 2 x 2 ( x u ) ′ + 4 x 2 u + x 2 ( x u ) ′ = 0 3x^2u^2+2x^2(xu)'+4x^2u+x^2(xu)'=0 3 x 2 u 2 + 2 x 2 ( xu ) ′ + 4 x 2 u + x 2 ( xu ) ′ = 0
2 x 3 u u ′ + x 3 u ′ + 5 x 2 u 2 + 5 x 2 u = 0 2x^3uu'+x^3u'+5x^2u^2+5x^2u=0 2 x 3 u u ′ + x 3 u ′ + 5 x 2 u 2 + 5 x 2 u = 0
( 2 u + 1 ) u ′ 5 u ( u + 1 ) = − 1 x \frac{(2u+1)u'}{5u(u+1)}=-\frac{1}{x} 5 u ( u + 1 ) ( 2 u + 1 ) u ′ = − x 1
∫ 2 u + 1 5 u ( u + 1 ) d u = − ∫ 1 x d x \int\frac{2u+1}{5u(u+1)}du=-\int\frac{1}{x}dx ∫ 5 u ( u + 1 ) 2 u + 1 d u = − ∫ x 1 d x
l n ( u 2 + u ) 5 = c − l n x \frac{ln(u^2+u)}{5}=c-lnx 5 l n ( u 2 + u ) = c − l n x
u 1 = − c 1 / x + 1 + 1 2 u_1=-\frac{\sqrt{c_1/x+1}+1}{2} u 1 = − 2 c 1 / x + 1 + 1
u 2 = c 1 / x + 1 − 1 2 u_2=\frac{\sqrt{c_1/x+1}-1}{2} u 2 = 2 c 1 / x + 1 − 1
y 1 = − c 1 / x + 1 + 1 2 x y_1=-\frac{\sqrt{c_1/x+1}+1}{2}x y 1 = − 2 c 1 / x + 1 + 1 x
y 2 = c 1 / x + 1 − 1 2 x y_2=\frac{\sqrt{c_1/x+1}-1}{2}x y 2 = 2 c 1 / x + 1 − 1 x
Comments