Question #248971

Solve the following initial value problem (IVP);

(a) dy = 9.8 − 0.196yy(0) = 48 by using the method of integrating factors.


1
Expert's answer
2021-10-12T04:41:23-0400

We have the following DE:


dydx=9.80.196y    dydx+0.196y=9.8    dydx+P(x)y=Q(x)\cfrac{dy}{dx}=9.8-0.196y \\ \implies \frac{dy}{dx}+0.196y=9.8 \iff \frac{dy}{dx}+P_{(x)}y=Q_{(x)}


Then we find the integrating factor as:

μ(x)=eP(x)dx=e0.196dx=e0.196x\mu_{(x)}=e^ {\int { P_{(x)} {dx}}}=e^ {0.196 \int {{dx}}}=e^ {0.196x}


We multiply the integrating factor for all the terms on the DE and we proceed to find y:


(e0.196x)dydx+(0.196e0.196x)y=(9.8)e0.196xddx(ye0.196x)=(9.8)e0.196x d(ye0.196x)=(9.8)e0.196xdx ye0.196x=(9.80.196)e0.196x+C    y=(9.80.196)+Ce0.196xy=50+Ce0.196x\\ (e^ {0.196x} ) \frac{dy}{dx}+(0.196e^ {0.196x}) y=(9.8) e^ {0.196x} \\ \cfrac{d}{dx} \Big( y\cdot e^ {0.196x} \Big)=(9.8) e^ {0.196x} \\ \text{ } \\ \int {d} \big( y\cdot e^ {0.196x} \big)= (9.8) \int{e^{0.196x} {dx} } \\ \text{ } \\ y\cdot e^ {0.196x} =( \frac{9.8}{0.196}) e^{0.196x}+C \\ \implies y =( \frac{9.8}{0.196})+C\cdot e^ {-0.196x} \\ \therefore y =50+C\cdot e^ {-0.196x}


Now that we have the general solution we proceed to use y(0) = 48 to find the particular solution:


y(0)=48=50+Ce0.196(0)    48=50+C    C=2y=502e0.196x\\ y(0)=48 =50+C\cdot e^ {-0.196(0)} \\ \implies 48 =50+C \implies C=-2 \\ \therefore y =50-2\cdot e^ {-0.196x}


In conclusion, the following initial value problem hasthe particular solution y=502e0.196xy =50-2\cdot e^ {-0.196x}.

Reference:

  • Thomas, G. B., & Finney, R. L. (1961). Calculus. Addison-Wesley Publishing Company.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS