We have the following DE:
dxdy=9.8−0.196y⟹dxdy+0.196y=9.8⟺dxdy+P(x)y=Q(x)
Then we find the integrating factor as:
μ(x)=e∫P(x)dx=e0.196∫dx=e0.196x
We multiply the integrating factor for all the terms on the DE and we proceed to find y:
(e0.196x)dxdy+(0.196e0.196x)y=(9.8)e0.196xdxd(y⋅e0.196x)=(9.8)e0.196x ∫d(y⋅e0.196x)=(9.8)∫e0.196xdx y⋅e0.196x=(0.1969.8)e0.196x+C⟹y=(0.1969.8)+C⋅e−0.196x∴y=50+C⋅e−0.196x
Now that we have the general solution we proceed to use y(0) = 48 to find the particular solution:
y(0)=48=50+C⋅e−0.196(0)⟹48=50+C⟹C=−2∴y=50−2⋅e−0.196x
Reference:
- Thomas, G. B., & Finney, R. L. (1961). Calculus. Addison-Wesley Publishing Company.
Comments