Find the solution to 2cos(x)y'(x)=2cos^2(x)-sin^2(x)+y^2 if y(x)=sin x denotes a particular solution
2cosx.y′(x)=2cos2(x)−sin2(x)+y22cosx.y'(x)=2cos^2(x)-sin^2(x)+y^2\\2cosx.y′(x)=2cos2(x)−sin2(x)+y2
Now substituting y(x)=sinxy(x)=sinxy(x)=sinx , we get:
2cosx.y′(x)=2cos2(x)−sin2(x)+sin2(x)⇒2cosx.y′(x)=2cos2x⇒y′(x)=cosx⇒dy=cosx.dx2cosx.y'(x)=2cos^2(x)-sin^2(x)+sin^2(x)\\ \Rightarrow 2cosx.y'(x)=2cos^2x\\ \Rightarrow y'(x)=cosx\\ \Rightarrow dy=cosx.dx2cosx.y′(x)=2cos2(x)−sin2(x)+sin2(x)⇒2cosx.y′(x)=2cos2x⇒y′(x)=cosx⇒dy=cosx.dx
Integrating both sides, we get:
y=sinx+cy=sinx+cy=sinx+c
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments