Question #248682

Find the solution to 2cos(x)y'(x)=2cos^2(x)-sin^2(x)+y^2 if y(x)=sin x denotes a particular solution


1
Expert's answer
2021-10-12T04:28:08-0400

2cosx.y(x)=2cos2(x)sin2(x)+y22cosx.y'(x)=2cos^2(x)-sin^2(x)+y^2\\

Now substituting y(x)=sinxy(x)=sinx , we get:

2cosx.y(x)=2cos2(x)sin2(x)+sin2(x)2cosx.y(x)=2cos2xy(x)=cosxdy=cosx.dx2cosx.y'(x)=2cos^2(x)-sin^2(x)+sin^2(x)\\ \Rightarrow 2cosx.y'(x)=2cos^2x\\ \Rightarrow y'(x)=cosx\\ \Rightarrow dy=cosx.dx

Integrating both sides, we get:

y=sinx+cy=sinx+c


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS