Question #248532
(2x+3)dy/dx -y+(2x+3)
1
Expert's answer
2021-10-11T16:29:40-0400

(2x+3)dydxy=0dydx=y2x+3dyy=dx2x+3(2x+3)\frac{dy}{dx}-y=0\\ \Rightarrow \frac{dy}{dx}=\frac{y}{2x+3}\\ \Rightarrow \frac{dy}{y}=\frac{dx}{2x+3}

Integrating both sides, we get:

ln(y)=ln(2x+3)2+ln(c)2ln(y)=ln(2x+3)+2ln(c)ln(y2)=ln(2x+3)+ln(c2)ln(y2)=ln(c2(2x+3))y2=c2(2x+3)y2=C(2x+3)ln(y)=\frac{ln(2x+3)}{2}+ln(c)\\ \Rightarrow 2ln(y)=ln(2x+3)+2ln(c)\\ \Rightarrow ln(y^2)=ln(2x+3)+ln(c^2)\\ \Rightarrow ln(y^2)=ln(c^2(2x+3))\\ \therefore y^2=c^2(2x+3)\\ \Rightarrow y^2=C(2x+3)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS