(2x+3)dydx−y=0⇒dydx=y2x+3⇒dyy=dx2x+3(2x+3)\frac{dy}{dx}-y=0\\ \Rightarrow \frac{dy}{dx}=\frac{y}{2x+3}\\ \Rightarrow \frac{dy}{y}=\frac{dx}{2x+3}(2x+3)dxdy−y=0⇒dxdy=2x+3y⇒ydy=2x+3dx
Integrating both sides, we get:
ln(y)=ln(2x+3)2+ln(c)⇒2ln(y)=ln(2x+3)+2ln(c)⇒ln(y2)=ln(2x+3)+ln(c2)⇒ln(y2)=ln(c2(2x+3))∴y2=c2(2x+3)⇒y2=C(2x+3)ln(y)=\frac{ln(2x+3)}{2}+ln(c)\\ \Rightarrow 2ln(y)=ln(2x+3)+2ln(c)\\ \Rightarrow ln(y^2)=ln(2x+3)+ln(c^2)\\ \Rightarrow ln(y^2)=ln(c^2(2x+3))\\ \therefore y^2=c^2(2x+3)\\ \Rightarrow y^2=C(2x+3)ln(y)=2ln(2x+3)+ln(c)⇒2ln(y)=ln(2x+3)+2ln(c)⇒ln(y2)=ln(2x+3)+ln(c2)⇒ln(y2)=ln(c2(2x+3))∴y2=c2(2x+3)⇒y2=C(2x+3)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments