Question #247724

(x²+2xy-7x)dx+(x²+2y²-3y)dy=0


1
Expert's answer
2021-10-07T13:20:03-0400
M(x,y)=x2+2xy7xM(x, y)=x^2+2xy-7x

My=2x\dfrac{\partial M}{\partial y}=2x


N(x,y)=x2+2y23yN(x, y)=x^2+2y^2-3y

Nx=2x\dfrac{\partial N}{\partial x}=2x

My=2x=Nx\dfrac{\partial M}{\partial y}=2x=\dfrac{\partial N}{\partial x}

The differential equation (x2+2xy7x)dx+(x2+2y23y)dy=0(x^2+2xy-7x)dx+(x^2+2y^2-3y)dy=0  is an exact equation.


{ux=M(x,y)uy=N(x,y)\begin{cases} \dfrac{\partial u}{\partial x}=M(x, y) \\ \\ \dfrac{\partial u}{\partial y}=N(x, y) \end{cases}

{ux=x2+2xy7xuy=x2+2y23y\begin{cases} \dfrac{\partial u}{\partial x}=x^2+2xy-7x \\ \\ \dfrac{\partial u}{\partial y}=x^2+2y^2-3y \end{cases}

u(x,y)=(x2+2xy7x)dx+φ(y)u(x, y)=\int(x^2+2xy-7x)dx+\varphi(y)

=13x3+x2y72x2+φ(y)=\dfrac{1}{3}x^3+x^2y-\dfrac{7}{2}x^2+\varphi(y)

uy=x2+φ(y)=x2+2y23y\dfrac{\partial u}{\partial y}=x^2+\varphi'(y)=x^2+2y^2-3y

φ(y)=2y23y\varphi'(y)=2y^2-3y

φ(y)=(2y23y)dy=23y332y2C\varphi(y)=\int(2y^2-3y)dy=\dfrac{2}{3}y^3-\dfrac{3}{2}y^2-C


u=13x3+x2y72x2+23y332y2Cu=\dfrac{1}{3}x^3+x^2y-\dfrac{7}{2}x^2+\dfrac{2}{3}y^3-\dfrac{3}{2}y^2-C

13x3+x2y72x2+23y332y2=C\dfrac{1}{3}x^3+x^2y-\dfrac{7}{2}x^2+\dfrac{2}{3}y^3-\dfrac{3}{2}y^2=C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS