(i) Let T(t)= the temperature of a cup of water at time t.
The differential equation involving T
dtdT=−k(T−1000),k>0T−25dT=−kdt Integrate
∫T−250dT=−∫kdt
ln(∣T−25∣)=−kt+lnA
T−25=Ae−kt
T−Ae−kt−25=0 (ii)
Given T(0)=100°C,T(3)=80°C
100=25+Ae−k(0)=>A=75
T(t)=25+75e−kt
80=25+75e−k(3)
e3k=5575
3k=ln(1115)
k=31ln(1115)
T(t)=25+75(1511)t/3
T(5)=25+75(1511)5/3
T(5)≈69.7°C
Comments