Question #246940

Solve the differential equation by Bernoulli equation. Show complete solution.


dy/dx + 1/3 y = 1/3 (1 + 3x) y4

1
Expert's answer
2021-10-06T18:09:05-0400
y+13y=13(1+3x)y4y'+\dfrac{1}{3}y=\dfrac{1}{3}(1+3x)y^4

v=y1n=y14=y3v=y^{1-n}=y^{1-4}=y^{-3}

v=3y4yv'=-3y^{-4}y'

13v+13v=13(1+3x)-\dfrac{1}{3}v'+\dfrac{1}{3}v=\dfrac{1}{3}(1+3x)

vv=13xv'-v=-1-3x

Integrating factor


μ(x)=ex\mu(x)=e^{-x}

exvexv=ex(1+3x)e^{-x}v'-e^{-x}v=-e^{-x}(1+3x)

d(exv)=ex(1+3x)dxd(e^{-x}v)=-e^{-x}(1+3x)dx

Integrate


d(exv)=ex(1+3x)dx\int d(e^{-x}v)=-e^{-x}(1+3x)dx

xexdx\int xe^{-x}dx

udv=uvvdu\int udv=uv-\int vdu

u=x,du=dxu=x, du=dx

dv=exdx,v=exdx=exdv=e^{-x}dx, v=\int e^{-x}dx=-e^{-x}

xexdx=xex+exdx\int xe^{-x}dx=-xe^{-x}+\int e^{-x}dx

=xexex+C1=-xe^{-x}-e^{-x}+C_1


exv=ex+3xex+3ex+Ce^{-x}v=e^{-x}+3xe^{-x}+3e^{-x}+C

v=4+3x+Cexv=4+3x+Ce^x

y=14+3x+Cex3y=\dfrac{1}{\sqrt[3]{4+3x+Ce^x}}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS