dxdy=x2y+cos(x2y) this is equation (i)
Let y=Vx2
Then dxdy=2Vx+x2dxdV 
Substituting dxdy in equation (i)
2Vx+x2dxdV=2xVx2+cos(x2Vx2) 
x2dxdV=2Vx−2Vx+cos(V) 
x2dxdV=cos(V) 
cos(V)dV=x2dx 
Integrating both sides;
∫sec(V)dV=∫x2dx 
ln(sec(V)+tan(V))=x−1+C this is equation (ii)
Substituting V=x2y into equation (ii)
ln(sec(x2y)+tan(x2y))=x−1+C 
                             
Comments