Question #246938

Solve the differential equation by substitution suggested by equation. Show complete solution.


(dy/dx) = 2y/x + cos(y/x2)


1
Expert's answer
2021-10-06T15:26:11-0400

dydx=2yx+cos(yx2)\frac{dy}{dx}=\frac{2y}{x}+cos(\frac{y}{x^{2}}) this is equation (i)

Let y=Vx2

Then dydx=2Vx+x2dVdx\frac{dy}{dx}=2Vx+x^{2}\frac{dV}{dx}

Substituting dydx\frac{dy}{dx} in equation (i)

2Vx+x2dVdx=2Vx2x+cos(Vx2x2)2Vx+x^{2}\frac{dV}{dx}=2\frac{Vx^{2}}{x}+cos(\frac{Vx^{2}}{x^{2}})

x2dVdx=2Vx2Vx+cos(V)x^{2}\frac{dV}{dx}=2Vx-2Vx+cos(V)

x2dVdx=cos(V)x^{2}\frac{dV}{dx}=cos(V)

dVcos(V)=dxx2\frac{dV}{cos(V)}=\frac{dx}{x^{2}}

Integrating both sides;

sec(V)dV=dxx2\int sec(V)dV=\int \frac{dx}{x^{2}}

ln(sec(V)+tan(V))=1x+Cln(sec(V)+tan(V))=\frac{-1}{x}+C this is equation (ii)

Substituting V=yx2V=\frac{y}{x^{2}} into equation (ii)

ln(sec(yx2)+tan(yx2))=1x+Cln(sec(\frac{y}{x^{2}})+tan(\frac{y}{x^{2}}))=\frac{-1}{x}+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS