Question #246834

Obtain the general solution of the following differential equations.

1. 𝑑𝑦 + 𝑦𝑒x𝑑𝑥 = 𝑒x𝑑𝑥

2. 𝑥𝑑𝑦 = (𝑒x − 2𝑦)𝑑𝑥

Obtain the particular solution satisfying the indicated conditions.

3. (2𝑦 − 𝑥3)𝑑𝑥 = 𝑥𝑑𝑦, 𝑦(2) = 4


1
Expert's answer
2021-10-06T10:16:21-0400

1.


dy=ex(1y)dxdy=e^x(1-y)dx

dy1y=exdx\dfrac{dy}{1-y}=e^xdx

Integrate


dy1y=exdx\int \dfrac{dy}{1-y}=\int e^xdx

ln1y=exlnC-\ln|1-y|=e^x-\ln C

1y=Ceex1-y=Ce^{-e^x}

y=1Ceexy=1-Ce^{-e^x}

2.


𝑥𝑑𝑦=(𝑒x2𝑦)𝑑𝑥𝑥𝑑𝑦 = (𝑒^x − 2𝑦)𝑑𝑥

y+2yx=exxy'+2\dfrac{y}{x}=\dfrac{e^x}{x}

Integrating factor


μ(x)=x2\mu(x)=x^2

x2y+2xy=xexx^2y'+2xy=xe^x

d(x2y)=xexdxd(x^2y)=xe^xdx

Integrate


d(x2y)=xexdx\int d(x^2y)=\int xe^xdx

xexdx\int xe^xdx

udv=uvvdu\int udv=uv-\int vdu

u=x,du=dxu=x, du=dx

dv=exdx,v=exdx=exdv=e^xdx, v=\int e^x dx=e^x

xexdx=xexexdx=xexex+C\int xe^xdx=xe^x-\int e^xdx=xe^x-e^x+C

Then


x2y=xexex+Cx^2y=xe^x-e^x+C

y=exxexx2+Cx2y=\dfrac{e^x}{x}-\dfrac{e^x}{x^2}+\dfrac{C}{x^2}

3.


y2xy=x2y'-\dfrac{2}{x}y=-x^2

Integrating factor


μ(x)=1x2\mu(x)=\dfrac{1}{x^2}

1x2y2x3y=1\dfrac{1}{x^2}y'-\dfrac{2}{x^3}y=-1

d(yx2)=dxd(\dfrac{y}{x^2})=-dx

Integrate


d(yx2)=dx\int d(\dfrac{y}{x^2})=-\int dx

yx2=x+C\dfrac{y}{x^2}=-x+C

y=x3+Cx2y=-x^3+Cx^2

𝑦(2)=4𝑦(2) = 4


4=(2)3+C(2)2=>C=34=-(2)^3+C(2)^2=>C=3

The particular solution satisfying the indicated conditions is

y=x3+3x2y=-x^3+3x^2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS