Question #246096
Solve the following initial value problem



Ut(x,t)=10Uxx(x,t) -10

U(-1,t)=U(1,t) Ux(-1,t)=Ux(1,t) t>0

Ux(x,0)=x+1 -1
1
Expert's answer
2021-10-20T04:07:02-0400

 Solution of heat equation:

un(x,t)=Bnsin(πnx/L)ekt(πn/L)2u_n(x,t)=B_nsin(\pi nx/L)e^{kt(\pi n/L)^2}

k=10k=10

Bn=2L0Lf(x)sin(πnxL)dxB_n=\frac{2}{L}\int^L_0f(x)sin(\frac{\pi nx}{L})dx , n=1,2,3,...

f(x)=u(x,0)=10f(x)=u(x,0)=10


Then:

10u(1,t)=u(1,t)-10u(-1,t)=u(1,t) :

10Bnsin(πn/L)e10t(πn/L)2=Bnsin(πn/L)e10t(πn/L)210\sum B_nsin(\pi n/L)e^{10t(\pi n/L)^2}=\sum B_nsin(\pi n/L)e^{10t(\pi n/L)^2}

    sin(πn/L)=0    L=1\implies sin(\pi n/L)=0 \implies L=1


ux=BnπnLcos(πnx/L)e10t(πn/L)2=Bnπncos(πnx)e10t(πn)2u_x=\sum B_n \frac{\pi n}{L} cos(\pi nx/L)e^{10t(\pi n/L)^2}=\sum B_n \pi n cos(\pi nx)e^{10t(\pi n)^2}


ux(x,0)=Bnπncos(πnx)=x+1u_x(x,0)=\sum B_n \pi n cos(\pi nx)=x+1


Bn=2001sin(πnx)dx=20πncos(πnx)01=20/(πn)20cos(πn)/(πn)B_n=20\int^1_0sin(\pi nx)dx=-\frac{20}{\pi n}cos(\pi nx)|^1_0=20/(\pi n)-20cos(\pi n)/(\pi n)


Bn=0B_n=0 for even n

Bn=40/(πn)B_n=40/(\pi n) for odd n


ux(x,0)=40cos(πnx)=x+1u_x(x,0)=40\sum cos(\pi nx)=x+1 , n=1,3,5,...


u(x,t)=40πnsin(πnx)e10t(πn)2u(x,t)=\sum\frac{40}{\pi n}sin(\pi nx)e^{10t(\pi n)^2} , n=1,3,5,...


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS