Solution of heat equation:
un(x,t)=Bnsin(πnx/L)ekt(πn/L)2
k=10
Bn=L2∫0Lf(x)sin(Lπnx)dx , n=1,2,3,...
f(x)=u(x,0)=10
Then:
−10u(−1,t)=u(1,t) :
10∑Bnsin(πn/L)e10t(πn/L)2=∑Bnsin(πn/L)e10t(πn/L)2
⟹sin(πn/L)=0⟹L=1
ux=∑BnLπncos(πnx/L)e10t(πn/L)2=∑Bnπncos(πnx)e10t(πn)2
ux(x,0)=∑Bnπncos(πnx)=x+1
Bn=20∫01sin(πnx)dx=−πn20cos(πnx)∣01=20/(πn)−20cos(πn)/(πn)
Bn=0 for even n
Bn=40/(πn) for odd n
ux(x,0)=40∑cos(πnx)=x+1 , n=1,3,5,...
u(x,t)=∑πn40sin(πnx)e10t(πn)2 , n=1,3,5,...
Comments