Question #246016

 Evaluate (π‘«πŸ + πŸ”π‘« + πŸ—)π’š = 𝒆 βˆ’πŸ‘π’• βˆ’ πŸ‘π’„π’π’”πŸ’π’• + π’π’π’ˆ5


1
Expert's answer
2021-10-04T16:47:59-0400

 Let us solve the differential equation (D2+6D+9)y=eβˆ’3tβˆ’3cos⁑4t+log⁑5.(D^2 + 6D + 9)y = e^{βˆ’3t} βˆ’ 3\cos 4t +\log 5.

The characteristic equation k2+6k+9=0k^2+6k+9=0 is equivalent to (k+3)2=0,(k+3)^2=0, and hence has the roots k1=k2=βˆ’3.k_1=k_2=-3. It follows that the general solution is of the form y=(C1+C2t)eβˆ’3t+yp,y=(C_1+C_2t)e^{-3t}+y_p,

where yp=at2eβˆ’3t+bcos⁑4t+csin⁑4t+d.y_p=at^2e^{-3t}+b\cos 4t+c\sin 4t+d. Then ypβ€²=2ateβˆ’3tβˆ’3at2eβˆ’3tβˆ’4bsin⁑4t+4ccos⁑4t,ypβ€²β€²=2aeβˆ’3tβˆ’6ateβˆ’3tβˆ’6ateβˆ’3t+9at2eβˆ’3tβˆ’16bcos⁑4tβˆ’16csin⁑4t.y'_p=2ate^{-3t}-3at^2e^{-3t}-4b\sin 4t+4c\cos 4t, y''_p=2ae^{-3t}-6ate^{-3t}-6ate^{-3t}+9at^2e^{-3t}-16b\cos 4t-16c\sin 4t.

We get the equation 2aeβˆ’3tβˆ’6ateβˆ’3tβˆ’6ateβˆ’3t+9at2eβˆ’3tβˆ’16bcos⁑4tβˆ’16csin⁑4t+6(2ateβˆ’3tβˆ’3at2eβˆ’3tβˆ’4bsin⁑4t+4ccos⁑4t)+9(at2eβˆ’3t+bcos⁑4t+csin⁑4t+d)=eβˆ’3tβˆ’3cos⁑4t+log⁑5,2ae^{-3t}-6ate^{-3t}-6ate^{-3t}+9at^2e^{-3t}-16b\cos 4t-16c\sin 4t+6(2ate^{-3t}-3at^2e^{-3t}-4b\sin 4t+4c\cos 4t)+9(at^2e^{-3t}+b\cos 4t+c\sin 4t+d)=e^{-3t}-3\cos 4t+\log 5,

which is equivalent to

2aeβˆ’3t+(βˆ’7bβˆ’24c)cos⁑4t+(βˆ’7cβˆ’24b)sin⁑4t+9d=eβˆ’3tβˆ’3cos⁑4t+log⁑5.2ae^{-3t}+(-7b-24c)\cos 4t+(-7c-24b)\sin 4t+9d=e^{-3t}-3\cos 4t+\log 5.

We conlude that 2a=1, βˆ’7bβˆ’24c=βˆ’3, βˆ’7cβˆ’24b=0, 9d=log⁑5.2a=1,\ -7b-24c=-3,\ -7c-24b=0,\ 9d=\log 5. It follows that a=12, d=19log⁑5,c=βˆ’247b, 7bβˆ’5767b=3.a=\frac{1}2,\ d=\frac{1}9\log 5, c=-\frac{24}7b,\ 7b-\frac{576}7b=3. Consequently, a=12, d=19log⁑5, b=βˆ’21527,c=72527.a=\frac{1}2,\ d=\frac{1}9\log 5, \ b=-\frac{21}{527}, c=\frac{72}{527}.


We conclude that the general solution of the differential equation (D2+6D+9)y=eβˆ’3tβˆ’3cos⁑4t+log⁑5(D^2 + 6D + 9)y = e^{βˆ’3t} βˆ’ 3\cos 4t +\log 5 is

y=(C1+C2t)eβˆ’3t+12t2eβˆ’3tβˆ’21527cos⁑4t+72527sin⁑4t+19log⁑5.y=(C_1+C_2t)e^{-3t}+\frac{1}2t^2e^{-3t}-\frac{21}{527}\cos 4t+\frac{72}{527}\sin 4t+\frac{1}9\log 5.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS