Question #245955

Solve the following IVP by power series method

xy′′ + y′ + 2y = 0, y(1) = 2,y′(1) = 4.


1
Expert's answer
2021-10-04T16:54:23-0400

Solution

New variable t = x-1  => x = t+1 and IVP is (t+1)y′′ + y′ + 2y = 0, y(0) = 2,y′(0) = 4.

Let

y(t)=n=0antny\left(t\right)=\sum_{n=0}^{\infty}{a_nt^n}

dydt=n=1nantn1=n=0(n+1)an+1tn\frac{dy}{dt}=\sum_{n=1}^{\infty}{na_nt^{n-1}}=\sum_{n=0}^{\infty}{\left(n+1\right)a_{n+1}t^n}

d2ydt2=n=0n(n+1)an+1tn1=n=0(n+1)(n+2)an+2tn\frac{d^2y}{dt^2}=\sum_{n=0}^{\infty}{n\left(n+1\right)a_{n+1}t^{n-1}}=\sum_{n=0}^{\infty}{\left(n+1\right)\left(n+2\right)a_{n+2}t^n}

Substitution into equation:

(t+1)n=0(n+1)(n+2)an+2tn+n=0(n+1)an+1tn+2n=0antn=0\left(t+1\right)\sum_{n=0}^{\infty}{\left(n+1\right)\left(n+2\right)a_{n+2}t^n}+\sum_{n=0}^{\infty}{\left(n+1\right)a_{n+1}t^n}+2\sum_{n=0}^{\infty}{a_nt^n}=0

n=0(n+1)(n+2)an+2tn+n=1(n+1)nan+1tn+n=0(n+1)an+1tn+2n=0antn=0\sum_{n=0}^{\infty}{\left(n+1\right)\left(n+2\right)a_{n+2}t^n}+\sum_{n=1}^{\infty}{\left(n+1\right)na_{n+1}t^n}+\sum_{n=0}^{\infty}{\left(n+1\right)a_{n+1}t^n}+2\sum_{n=0}^{\infty}{a_nt^n}=0

2a2+a1+2a0+n=1(n+1)(n+2)an+2tn+n=1(n+1)2an+1tn+2n=1antn=02a_2+a_1+2a_0+\sum_{n=1}^{\infty}{\left(n+1\right)\left(n+2\right)a_{n+2}t^n}+\sum_{n=1}^{\infty}{\left(n+1\right)^2a_{n+1}t^n}+2\sum_{n=1}^{\infty}{a_nt^n}=0

Coefficients near tn are equal to zero.

n=0: 2a2 +a1 + 2a0=0   =>  a2 = -a1 /2 - a0 

n>0: (n+1)(n+2)an+2+(n+1)2an+1+2an=0 =>  an+2 =-(n+1)an+1/(n+2)-2an/[(n+1) (n+2)]

From initial values for t: y(0) = 2,y′(0) = 4 => a0 = 2, a1 = 4

Therefore for recurrent formula  an+2 =-(n+1)an+1/(n+2)-2an/[(n+1) (n+2)] with  a0 = 2, a1 = 4 solution is

y(x)=2+4(x1) +n=0an+2(x1)n+2y\left(x\right)=2+4\left(x-1\right)\ +\sum_{n=0}^{\infty}{a_{n+2}\left(x-1\right)^{n+2}}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS