Solution
New variable t = x-1 => x = t+1 and IVP is (t+1)y′′ + y′ + 2y = 0, y(0) = 2,y′(0) = 4.
Let
y(t)=∑n=0∞antn
dtdy=∑n=1∞nantn−1=∑n=0∞(n+1)an+1tn
dt2d2y=∑n=0∞n(n+1)an+1tn−1=∑n=0∞(n+1)(n+2)an+2tn
Substitution into equation:
(t+1)∑n=0∞(n+1)(n+2)an+2tn+∑n=0∞(n+1)an+1tn+2∑n=0∞antn=0
∑n=0∞(n+1)(n+2)an+2tn+∑n=1∞(n+1)nan+1tn+∑n=0∞(n+1)an+1tn+2∑n=0∞antn=0
2a2+a1+2a0+∑n=1∞(n+1)(n+2)an+2tn+∑n=1∞(n+1)2an+1tn+2∑n=1∞antn=0
Coefficients near tn are equal to zero.
n=0: 2a2 +a1 + 2a0=0 => a2 = -a1 /2 - a0
n>0: (n+1)(n+2)an+2+(n+1)2an+1+2an=0 => an+2 =-(n+1)an+1/(n+2)-2an/[(n+1) (n+2)]
From initial values for t: y(0) = 2,y′(0) = 4 => a0 = 2, a1 = 4
Therefore for recurrent formula an+2 =-(n+1)an+1/(n+2)-2an/[(n+1) (n+2)] with a0 = 2, a1 = 4 solution is
y(x)=2+4(x−1) +∑n=0∞an+2(x−1)n+2
Comments