dP/dt+2tP=P4t-2
Solution:
dp/dt+2tp=p+4t−2dp/dt+2tp=p+4t-2dp/dt+2tp=p+4t−2
dp/dt=p+4t−2−2tp=(2−p)(−1+2t)dp/dt=p+4t-2-2tp=(2-p)(-1+2t)dp/dt=p+4t−2−2tp=(2−p)(−1+2t)
dp/dt=(2−p)(−1+2t)dp/dt=(2-p)(-1+2t)dp/dt=(2−p)(−1+2t)
∫dp/(2−p)=∫(−1+2t)dt\int dp/(2-p)=\int(-1+2t)dt∫dp/(2−p)=∫(−1+2t)dt
−ln(2−p)=−t+t2+C3-ln (2-p)=-t+t^2+C_3−ln(2−p)=−t+t2+C3
2−p=exp(t−t2+C2)=C1exp(t−t2),C2=−C3,C1=exp(C2)2-p=exp(t-t^2+C_2)=C_1exp(t-t^2), C_2=-C_3, C_1=exp(C_2)2−p=exp(t−t2+C2)=C1exp(t−t2),C2=−C3,C1=exp(C2)
p(t)=Cexp(t−t2)+2,C=−C1p(t)=Cexp(t-t^2)+2, C=-C_1p(t)=Cexp(t−t2)+2,C=−C1
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments