Question #245835

(1+x)dy/dx-xy=x+x^2


1
Expert's answer
2021-10-06T00:02:13-0400

Answer:-

y+P(x)y=Q(x)y'+P(x)y=Q(x)


P(x)=xx+1P(x)=-\frac{x}{x+1} , Q(x)=xQ(x)=x


y+P(x)y=0y'+P(x)y=0


dyy=P(x)dx\frac{dy}{y}=-P(x)dx


dyy=P(x)dx\int\frac{dy}{y}=-\int P(x)dx


lny=P(x)dxln|y|=-\int P(x)dx


y=±eP(x)dxy=\pm e^{-\int P(x)dx}


P(x)dx=(xx+1)dx=x+ln(x+1)+c\int P(x)dx=\int(-\frac{x}{x+1})dx=-x+ln(x+1)+c


y=cexx+1y=\frac{ce^x}{x+1}


y=c(x)exx+1y=\frac{c(x)e^x}{x+1}


ddxc(x)=Q(x)eP(x)dx\frac{d}{dx}c(x)=Q(x)e^{\int P(x)dx}


ddxc(x)=(x2+x)ex\frac{d}{dx}c(x)=(x^2+x)e^{-x}


(x2+x)exdx=(x23x3)ex+c\int (x^2+x)e^{-x}dx=(-x^2-3x-3)e^{-x}+c


y(x)=ex((x23x3)ex+c)x+1y(x)=\frac{e^x((-x^2-3x-3)e^{-x}+c)}{x+1}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS