dtdP=0.05P−0.03, P(0)=40
6.2)
dtdP=0.05P−0.03
0.05P−0.03dP=dt
Let 0.05P-0.03=Q
dPdQ=0.05
dP=0.05dQ
Now,
0.05Q1dQ=dt
QdQ=0.05dt
Integrate both sides;
∫QdQ=∫0.05dt
ln Q=0.05t+C
ln(0.05P-0.03)=0.05t+C
0.05P−0.03=e0.05t+C
P=0.05e0.05t+C+0.03
P=0.05e0.05t∗eC+0.03
P=0.05C1e0.05t+0.03 ,where C1=eC
P=C2e0.05t+0.6 ,where C2=0.05C1
Using P(0)=40;
40=C2+0.6
C2=40-0.6=39.4
P=39.4e0.05t+0.6
6.3)
We use the equation above,
P=39.4e0.05t+0.6
t=10
P=39.4e0.05∗10+0.6
=64.989618+0.6
=65.559618million
Comments
This was correct and helpful. Thank you so much