dtdP=0.05P−0.03, P(0)=40 
6.2)
dtdP=0.05P−0.03 
0.05P−0.03dP=dt 
Let 0.05P-0.03=Q
dPdQ=0.05 
dP=0.05dQ 
Now,
0.05Q1dQ=dt 
QdQ=0.05dt 
Integrate both sides;
∫QdQ=∫0.05dt 
ln Q=0.05t+C
ln(0.05P-0.03)=0.05t+C
0.05P−0.03=e0.05t+C 
P=0.05e0.05t+C+0.03 
P=0.05e0.05t∗eC+0.03 
P=0.05C1e0.05t+0.03 ,where C1=eC 
P=C2e0.05t+0.6 ,where C2=0.05C1 
Using P(0)=40;
40=C2+0.6
C2=40-0.6=39.4
P=39.4e0.05t+0.6 
6.3)
We use the equation above,
P=39.4e0.05t+0.6 
t=10
P=39.4e0.05∗10+0.6 
=64.989618+0.6 
=65.559618million
                             
Comments
This was correct and helpful. Thank you so much