Question #245173

y''+y=sin^2(x)


1
Expert's answer
2021-10-03T17:43:52-0400

y+y=sin2(x)y^{\prime\prime}+y=\sin^{2}(x) (1)

The general solution will be the sum of the complementary solution and particular solution.

Find the complementary solution for the homogeneous equation:

y+y=0y^{\prime\prime}+y=0.

Compose the characteristic equation:

λ2+1=0    λ=i\lambda^{2}+1=0\implies \lambda=i or λ=i\lambda=-i.

For complementary solution:

yc=y1(x)+y2(x)y_{c}=y_{1}(x)+y_{2}(x), where y1(x)=C1cos(x)y_{1}(x)=C_{1}\cos(x) and y2(x)=C2sin(x).y_{2}(x)=C_{2}\sin(x).

yc=C1cos(x)+C2sin(x)y_{c}=C_{1}\cos(x)+C_{2}\sin(x)

-------------------------------------------------------------------------------------------------------------------------------

Find the particular solution for (1).

sin2(x)=1212cos(2x)    y+y=1212cos(2x)\sin^{2}(x)=\frac{1}{2}-\frac{1}{2}\cos(2x)\implies y^{\prime\prime}+y=\frac{1}{2}-\frac{1}{2}\cos(2x).

It's clear that yp=12+αcos(2x)y_{p}=\frac{1}{2}+\alpha\cos(2x), αconstant\alpha - constant.

Find α.\alpha.

yp+yp=4α(cos(2x))+12+αcos(2x)=1212cos(2x)y_p^{\prime\prime}+y_p=4\alpha(-\cos(2x))+\frac{1}{2}+\alpha\cos(2x)=\frac{1}{2}-\frac{1}{2}\cos(2x).

α=16\boxed{\alpha=\frac{1}{6}}

yp=12+16cos(2x)y_{p}=\frac{1}{2}+\frac{1}{6}\cos(2x).

The general solution is:

y(x)=yc(x)+yp(x)=C1cos(x)+C2sin(x)+12+16cos(2x)y(x)=y_{c}(x)+y_{p}(x)=C_{1}\cos(x)+C_{2}\sin(x)+\frac{1}{2}+\frac{1}{6}\cos(2x).

y=C1cos(x)+C2sin(x)+12+16cos(2x)\boxed{y=C_{1}\cos(x)+C_{2}\sin(x)+\frac{1}{2}+\frac{1}{6}\cos(2x)}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS