y′′+y=sin2(x) (1)
The general solution will be the sum of the complementary solution and particular solution.
Find the complementary solution for the homogeneous equation:
y′′+y=0.
Compose the characteristic equation:
λ2+1=0⟹λ=i or λ=−i.
For complementary solution:
yc=y1(x)+y2(x), where y1(x)=C1cos(x) and y2(x)=C2sin(x).
yc=C1cos(x)+C2sin(x)
-------------------------------------------------------------------------------------------------------------------------------
Find the particular solution for (1).
sin2(x)=21−21cos(2x)⟹y′′+y=21−21cos(2x).
It's clear that yp=21+αcos(2x), α−constant.
Find α.
yp′′+yp=4α(−cos(2x))+21+αcos(2x)=21−21cos(2x).
α=61
yp=21+61cos(2x).
The general solution is:
y(x)=yc(x)+yp(x)=C1cos(x)+C2sin(x)+21+61cos(2x).
y=C1cos(x)+C2sin(x)+21+61cos(2x)
Comments