Question #245166

Find the general solution to y"-y'-2y=2e^3x


1
Expert's answer
2021-10-03T17:40:49-0400

Given differential equation is

y"-y'-2y=2e^3x

i.e. d2ydx2dydx2y=2e3x\frac{d²y}{dx²}-\frac{dy}{dx}-2y = 2e^{3x}

This is a second order linear differential equation.

General solution of it comprises of two parts, complementary function and particular integral.

Complementary function:

Auxiliary equation is m²-m-2=0

=> (m-2)(m+1) = 0

=> m = 2, -1

So complementary function is

Aex+Be2xAe^{-x}+Be^{2x} , where A, B are constants

Particular integral:

Particular integral of the given differential equation is

1D2D2(2e3x)\frac{1}{D²-D-2}(2e^{3x})

= e3x1(D+3)2(D+3)2(2)e^{3x}\frac{1}{(D+3)²-(D+3)-2}(2) [since 1f(D)keax=eax1f(D+a)k\frac{1}{f(D)}ke^{ax} = e^{ax}\frac{1}{f(D+a)}k ]

= 2e3x1D2+5D+4(1)2e^{3x}\frac{1}{D²+5D+4}(1)

= 2e3x411+D2+5D4(1)\frac{2e^{3x}}{4}\frac{1}{1+\frac{D²+5D}{4}}(1)

= e3x2[1+D2+5D4]1(1)\frac{e^{3x}}{2}[1+\frac{D²+5D}{4}]^{-1}(1)

= e3x2[1D2+5D4+(D2+5D4)2...](1)\frac{e^{3x}}{2}[1-\frac{D²+5D}{4}+(\frac{D²+5D}{4})^{2}-...∞](1)

= e3x2\frac{e^{3x}}{2} , Since Dⁿ(1) = 0 for every natural number n.

So the general solution is

y = Aex+Be2xAe^{-x}+Be^{2x} + e3x2\frac{e^{3x}}{2} , where A, B are arbitrary constants.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS