x2−yzdx=y2−zxdy=z2−xydz Taking the multipliers y,z,x, then the ratio,
x2y−y2z+y2z−z2x+xz2−x2yydx+zdy+xdz
=0ydx+zdy+xdz Hence
ydx+zdy+xdz=0 Integrate
xy+yz+zx=c1 Taking the multipliers xy,xz,x2, then the ratio,
x3y−xy2z+xy2z−z2x2+x2z2−x3yxydx+xzdy+x2dz
=0xydx+xzdy+x2dz Hence
xydx+xzdy+x2dz=0 Integrate
2x2y+xyz+x2z=2c2
x2y+2xyz+2x2z=c2 Therefore the solutin is
Φ(xy+yz+zx,x2y+2xyz+2x2z)=0 where Φ is an arbitrary function.
Comments