Question #243501
Find the general solution of the differential equations using method of unndetermined coefficients (MUC) and method of variation of parameters (MVP) .

y" +y = 2x sin x
1
Expert's answer
2021-09-29T07:22:30-0400

1. Homogeneous equation


y+y=0y''+y=0

Corresponding (auxiliary) equation


r2+r=0r^2+r=0

r=±ir=\pm i

The general solution of the homogeneous differential equation is


yh=c1cosx+c2sinxy_h=c_1\cos x+c_2\sin x

Find the particular solution of the non homogeneous differential equation


yp=(Ax2+Bx+C)cosx+(Dx2+Ex+F)sinxy_p=(Ax^2+Bx+C)\cos x+(Dx^2+Ex+F)\sin x

yp=(Ax2+Bx+C)sinx+(2Ax+B)cosxy_p'=-(Ax^2+Bx+C)\sin x+(2Ax+B)\cos x

+(Dx2+Ex+F)cosx+(2Dx+E)sinx+(Dx^2+Ex+F)\cos x+(2Dx+E)\sin x

yp=(Ax2+Bx+C)cosx2(2Ax+B)sinxy_p''=-(Ax^2+Bx+C)\cos x-2(2Ax+B)\sin x

+2Acosx(Dx2+Ex+F)sinx+2A\cos x-(Dx^2+Ex+F)\sin x

+2(2Dx+E)cosx+2Dsinx+2(2Dx+E)\cos x+2D\sin x

Substitute


(Ax2+Bx+C)cosx2(2Ax+B)sinx-(Ax^2+Bx+C)\cos x-2(2Ax+B)\sin x+2Acosx(Dx2+Ex+F)sinx+2A\cos x-(Dx^2+Ex+F)\sin x+2(2Dx+E)cosx+2Dsinx+2(2Dx+E)\cos x+2D\sin x+(Ax2+Bx+C)cosx+(Dx2+Ex+F)sinx+(Ax^2+Bx+C)\cos x+(Dx^2+Ex+F)\sin x=2xsinx=2x\sin x



sinx:\sin x:


4Ax2BDx2ExF+2D-4Ax-2B-Dx^2-Ex-F+2D

+Dx2+Ex+F=2x+Dx^2+Ex+F=2x

cosx:\cos x:


Ax2BxC+2A+4Dx+2E-Ax^2-Bx-C+2A+4Dx+2E

+Ax2+Bx+C=0+Ax^2+Bx+C=0

4A=2-4A=22B+2D=0-2B+2D=0D=0D=02A+2E=02A+2E=0

yp=12x2cosx+12xsinxy_p=-\dfrac{1}{2}x^2\cos x+\dfrac{1}{2}x\sin x

The general solution of the non homogeneous differential equation is


y=yh+ypy=y_h+y_p

y=c1cosx+c2sinx12x2cosx+12xsinxy=c_1\cos x+c_2\sin x-\dfrac{1}{2}x^2\cos x+\dfrac{1}{2}x\sin x

2. Homogeneous equation


y+y=0y''+y=0

Corresponding (auxiliary) equation


r2+r=0r^2+r=0

r=±ir=\pm i

Find the general solution of the non homogeneous differential equation in form


y=C1cosx+C2sinxy=C_1\cos x+C_2\sin x

y=C1sinx+C2cosx+C1cosx+C2sinxy'=-C_1\sin x+C_2\cos x+C_1'\cos x+C_2'\sin x

Let


C1cosx+C2sinx=0C_1'\cos x+C_2'\sin x=0

Then


y=C1sinx+C2cosxy'=-C_1\sin x+C_2\cos x

y=C1cosxC2sinxC1sinx+C2cosxy''=-C_1\cos x-C_2\sin x-C_1' \sin x+C_2'\cos x

Substitute


C1cosxC2sinxC1sinx+C2cosx-C_1\cos x-C_2\sin x-C_1' \sin x+C_2'\cos x

+C1cosx+C2sinx=2xsinx+C_1\cos x+C_2\sin x=2x\sin x

C1=C2tanxC_1'=-C_2'\tan x

C2tanxsinx+C2cosx=2xsinxC_2' \tan x\sin x+C_2'\cos x=2x\sin x

C2sin2x+C2cos2x=2xsinxcosxC_2' \sin^2 x+C_2'\cos^2 x=2x\sin x\cos x

C2=2xsinxcosxC_2'=2x\sin x\cos x

C2=2xsinxcosxdxC_2=\int2x\sin x\cos xdx

2xsinxcosxdx\int2x\sin x\cos xdx




udv=uvvdu\int udv=uv-\int vdu

u=x,du=dxu=x, du=dx

dv=2sinxcosxdx,v=2sinxcosxdxdv=2\sin x\cos xdx, v=\int2\sin x\cos xdx

=sin(2x)dx=12cos(2x)=\int\sin (2x)dx=-\dfrac{1}{2}\cos(2x)

2xsinxcosxdx=12xcos(2x)+12cos(2x)dx\int2x\sin x\cos xdx=-\dfrac{1}{2}x\cos(2x)+\int\dfrac{1}{2}\cos(2x)dx

=12xcos(2x)+14sin(2x)+C3=-\dfrac{1}{2}x\cos(2x)+\dfrac{1}{4}\sin(2x)+C_3

C2=12xcos(2x)+14sin(2x)+C3C_2=-\dfrac{1}{2}x\cos(2x)+\dfrac{1}{4}\sin(2x)+C_3


C1=2xsinxcosxtanx=2xsin2xC_1'=-2x\sin x\cos x\tan x=-2x\sin^2x

=x(1cos(2x)=xcos(2x)x=-x(1-\cos (2x)=x\cos (2x)-x

C1=(xcos(2x)x)dxC_1=\int(x\cos (2x)-x)dx

xcos(2x)dx\int x\cos (2x)dx


udv=uvvdu\int udv=uv-\int vdu

u=x,du=dxu=x, du=dx

dv=cos(2x)dx,v=cos(2x)dx=12sin(2x)dv=\cos (2x)dx, v=\int\cos(2x)dx=\dfrac{1}{2}\sin(2x)

xcos(2x)dx=12xsin(2x)12sin(2x)dx\int x\cos (2x)dx=\dfrac{1}{2}x\sin(2x)-\int\dfrac{1}{2}\sin(2x)dx

=12xsin(2x)+14cos(2x)+C4=\dfrac{1}{2}x\sin(2x)+\dfrac{1}{4}\cos(2x)+C_4

C1=12xsin(2x)+14cos(2x)12x2+C4C_1=\dfrac{1}{2}x\sin(2x)+\dfrac{1}{4}\cos(2x)-\dfrac{1}{2}x^2+C_4

y=(12xsin(2x)+14cos(2x)12x2+C4)cosxy=(\dfrac{1}{2}x\sin(2x)+\dfrac{1}{4}\cos(2x)-\dfrac{1}{2}x^2+C_4)\cos x

+(12xcos(2x)+14sin(2x)+C3)sinx+(-\dfrac{1}{2}x\cos(2x)+\dfrac{1}{4}\sin(2x)+C_3)\sin x

y=C4cosx+C3sinx12x2cosxy=C_4\cos x+C_3\sin x-\dfrac{1}{2}x^2\cos x

+12x(sin(2x)cosxcos(2x)sinx)+\dfrac{1}{2}x(\sin(2x)\cos x-\cos(2x)\sin x)

+14(cos(2x)cosx+sin(2x)sinx)+\dfrac{1}{4}(\cos(2x)\cos x+\sin(2x)\sin x)y=C4cosx+C3sinx12x2cosx+12x+14cosxy=C_4\cos x+C_3\sin x-\dfrac{1}{2}x^2\cos x+\dfrac{1}{2}x+\dfrac{1}{4}\cos x

The general solution of the non homogeneous differential equation is


y=C5cosx+C3sinx12x2cosx+12xy=C_5\cos x+C_3\sin x-\dfrac{1}{2}x^2\cos x+\dfrac{1}{2}x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS