1. Homogeneous equation
y′′+y=0 Corresponding (auxiliary) equation
r2+r=0
r=±i The general solution of the homogeneous differential equation is
yh=c1cosx+c2sinx Find the particular solution of the non homogeneous differential equation
yp=(Ax2+Bx+C)cosx+(Dx2+Ex+F)sinx
yp′=−(Ax2+Bx+C)sinx+(2Ax+B)cosx
+(Dx2+Ex+F)cosx+(2Dx+E)sinx
yp′′=−(Ax2+Bx+C)cosx−2(2Ax+B)sinx
+2Acosx−(Dx2+Ex+F)sinx
+2(2Dx+E)cosx+2Dsinx
Substitute
−(Ax2+Bx+C)cosx−2(2Ax+B)sinx+2Acosx−(Dx2+Ex+F)sinx+2(2Dx+E)cosx+2Dsinx+(Ax2+Bx+C)cosx+(Dx2+Ex+F)sinx=2xsinx
sinx:
−4Ax−2B−Dx2−Ex−F+2D
+Dx2+Ex+F=2x
cosx:
−Ax2−Bx−C+2A+4Dx+2E
+Ax2+Bx+C=0
−4A=2−2B+2D=0D=02A+2E=0
yp=−21x2cosx+21xsinx The general solution of the non homogeneous differential equation is
y=yh+yp
y=c1cosx+c2sinx−21x2cosx+21xsinx
2. Homogeneous equation
y′′+y=0 Corresponding (auxiliary) equation
r2+r=0
r=±iFind the general solution of the non homogeneous differential equation in form
y=C1cosx+C2sinx
y′=−C1sinx+C2cosx+C1′cosx+C2′sinxLet
C1′cosx+C2′sinx=0 Then
y′=−C1sinx+C2cosx
y′′=−C1cosx−C2sinx−C1′sinx+C2′cosx Substitute
−C1cosx−C2sinx−C1′sinx+C2′cosx
+C1cosx+C2sinx=2xsinx
C1′=−C2′tanx
C2′tanxsinx+C2′cosx=2xsinx
C2′sin2x+C2′cos2x=2xsinxcosx
C2′=2xsinxcosx
C2=∫2xsinxcosxdx
∫2xsinxcosxdx
∫udv=uv−∫vdu
u=x,du=dx
dv=2sinxcosxdx,v=∫2sinxcosxdx
=∫sin(2x)dx=−21cos(2x)
∫2xsinxcosxdx=−21xcos(2x)+∫21cos(2x)dx
=−21xcos(2x)+41sin(2x)+C3
C2=−21xcos(2x)+41sin(2x)+C3
C1′=−2xsinxcosxtanx=−2xsin2x
=−x(1−cos(2x)=xcos(2x)−x
C1=∫(xcos(2x)−x)dx
∫xcos(2x)dx
∫udv=uv−∫vdu
u=x,du=dx
dv=cos(2x)dx,v=∫cos(2x)dx=21sin(2x)
∫xcos(2x)dx=21xsin(2x)−∫21sin(2x)dx
=21xsin(2x)+41cos(2x)+C4
C1=21xsin(2x)+41cos(2x)−21x2+C4
y=(21xsin(2x)+41cos(2x)−21x2+C4)cosx
+(−21xcos(2x)+41sin(2x)+C3)sinx
y=C4cosx+C3sinx−21x2cosx
+21x(sin(2x)cosx−cos(2x)sinx)
+41(cos(2x)cosx+sin(2x)sinx)y=C4cosx+C3sinx−21x2cosx+21x+41cosx
The general solution of the non homogeneous differential equation is
y=C5cosx+C3sinx−21x2cosx+21x
Comments